File:  [local] / rpl / lapack / lapack / dlatbs.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:00 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLATBS solves a triangular banded system of equations.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLATBS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatbs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatbs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatbs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
   22: *                          SCALE, CNORM, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, NORMIN, TRANS, UPLO
   26: *       INTEGER            INFO, KD, LDAB, N
   27: *       DOUBLE PRECISION   SCALE
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   AB( LDAB, * ), CNORM( * ), X( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DLATBS solves one of the triangular systems
   40: *>
   41: *>    A *x = s*b  or  A**T*x = s*b
   42: *>
   43: *> with scaling to prevent overflow, where A is an upper or lower
   44: *> triangular band matrix.  Here A**T denotes the transpose of A, x and b
   45: *> are n-element vectors, and s is a scaling factor, usually less than
   46: *> or equal to 1, chosen so that the components of x will be less than
   47: *> the overflow threshold.  If the unscaled problem will not cause
   48: *> overflow, the Level 2 BLAS routine DTBSV is called.  If the matrix A
   49: *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
   50: *> non-trivial solution to A*x = 0 is returned.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] UPLO
   57: *> \verbatim
   58: *>          UPLO is CHARACTER*1
   59: *>          Specifies whether the matrix A is upper or lower triangular.
   60: *>          = 'U':  Upper triangular
   61: *>          = 'L':  Lower triangular
   62: *> \endverbatim
   63: *>
   64: *> \param[in] TRANS
   65: *> \verbatim
   66: *>          TRANS is CHARACTER*1
   67: *>          Specifies the operation applied to A.
   68: *>          = 'N':  Solve A * x = s*b  (No transpose)
   69: *>          = 'T':  Solve A**T* x = s*b  (Transpose)
   70: *>          = 'C':  Solve A**T* x = s*b  (Conjugate transpose = Transpose)
   71: *> \endverbatim
   72: *>
   73: *> \param[in] DIAG
   74: *> \verbatim
   75: *>          DIAG is CHARACTER*1
   76: *>          Specifies whether or not the matrix A is unit triangular.
   77: *>          = 'N':  Non-unit triangular
   78: *>          = 'U':  Unit triangular
   79: *> \endverbatim
   80: *>
   81: *> \param[in] NORMIN
   82: *> \verbatim
   83: *>          NORMIN is CHARACTER*1
   84: *>          Specifies whether CNORM has been set or not.
   85: *>          = 'Y':  CNORM contains the column norms on entry
   86: *>          = 'N':  CNORM is not set on entry.  On exit, the norms will
   87: *>                  be computed and stored in CNORM.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] N
   91: *> \verbatim
   92: *>          N is INTEGER
   93: *>          The order of the matrix A.  N >= 0.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] KD
   97: *> \verbatim
   98: *>          KD is INTEGER
   99: *>          The number of subdiagonals or superdiagonals in the
  100: *>          triangular matrix A.  KD >= 0.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] AB
  104: *> \verbatim
  105: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
  106: *>          The upper or lower triangular band matrix A, stored in the
  107: *>          first KD+1 rows of the array. The j-th column of A is stored
  108: *>          in the j-th column of the array AB as follows:
  109: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  110: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDAB
  114: *> \verbatim
  115: *>          LDAB is INTEGER
  116: *>          The leading dimension of the array AB.  LDAB >= KD+1.
  117: *> \endverbatim
  118: *>
  119: *> \param[in,out] X
  120: *> \verbatim
  121: *>          X is DOUBLE PRECISION array, dimension (N)
  122: *>          On entry, the right hand side b of the triangular system.
  123: *>          On exit, X is overwritten by the solution vector x.
  124: *> \endverbatim
  125: *>
  126: *> \param[out] SCALE
  127: *> \verbatim
  128: *>          SCALE is DOUBLE PRECISION
  129: *>          The scaling factor s for the triangular system
  130: *>             A * x = s*b  or  A**T* x = s*b.
  131: *>          If SCALE = 0, the matrix A is singular or badly scaled, and
  132: *>          the vector x is an exact or approximate solution to A*x = 0.
  133: *> \endverbatim
  134: *>
  135: *> \param[in,out] CNORM
  136: *> \verbatim
  137: *>          CNORM is DOUBLE PRECISION array, dimension (N)
  138: *>
  139: *>          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  140: *>          contains the norm of the off-diagonal part of the j-th column
  141: *>          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
  142: *>          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  143: *>          must be greater than or equal to the 1-norm.
  144: *>
  145: *>          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  146: *>          returns the 1-norm of the offdiagonal part of the j-th column
  147: *>          of A.
  148: *> \endverbatim
  149: *>
  150: *> \param[out] INFO
  151: *> \verbatim
  152: *>          INFO is INTEGER
  153: *>          = 0:  successful exit
  154: *>          < 0:  if INFO = -k, the k-th argument had an illegal value
  155: *> \endverbatim
  156: *
  157: *  Authors:
  158: *  ========
  159: *
  160: *> \author Univ. of Tennessee
  161: *> \author Univ. of California Berkeley
  162: *> \author Univ. of Colorado Denver
  163: *> \author NAG Ltd.
  164: *
  165: *> \ingroup doubleOTHERauxiliary
  166: *
  167: *> \par Further Details:
  168: *  =====================
  169: *>
  170: *> \verbatim
  171: *>
  172: *>  A rough bound on x is computed; if that is less than overflow, DTBSV
  173: *>  is called, otherwise, specific code is used which checks for possible
  174: *>  overflow or divide-by-zero at every operation.
  175: *>
  176: *>  A columnwise scheme is used for solving A*x = b.  The basic algorithm
  177: *>  if A is lower triangular is
  178: *>
  179: *>       x[1:n] := b[1:n]
  180: *>       for j = 1, ..., n
  181: *>            x(j) := x(j) / A(j,j)
  182: *>            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  183: *>       end
  184: *>
  185: *>  Define bounds on the components of x after j iterations of the loop:
  186: *>     M(j) = bound on x[1:j]
  187: *>     G(j) = bound on x[j+1:n]
  188: *>  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  189: *>
  190: *>  Then for iteration j+1 we have
  191: *>     M(j+1) <= G(j) / | A(j+1,j+1) |
  192: *>     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  193: *>            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  194: *>
  195: *>  where CNORM(j+1) is greater than or equal to the infinity-norm of
  196: *>  column j+1 of A, not counting the diagonal.  Hence
  197: *>
  198: *>     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  199: *>                  1<=i<=j
  200: *>  and
  201: *>
  202: *>     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  203: *>                                   1<=i< j
  204: *>
  205: *>  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTBSV if the
  206: *>  reciprocal of the largest M(j), j=1,..,n, is larger than
  207: *>  max(underflow, 1/overflow).
  208: *>
  209: *>  The bound on x(j) is also used to determine when a step in the
  210: *>  columnwise method can be performed without fear of overflow.  If
  211: *>  the computed bound is greater than a large constant, x is scaled to
  212: *>  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  213: *>  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  214: *>
  215: *>  Similarly, a row-wise scheme is used to solve A**T*x = b.  The basic
  216: *>  algorithm for A upper triangular is
  217: *>
  218: *>       for j = 1, ..., n
  219: *>            x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
  220: *>       end
  221: *>
  222: *>  We simultaneously compute two bounds
  223: *>       G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
  224: *>       M(j) = bound on x(i), 1<=i<=j
  225: *>
  226: *>  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  227: *>  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  228: *>  Then the bound on x(j) is
  229: *>
  230: *>       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  231: *>
  232: *>            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  233: *>                      1<=i<=j
  234: *>
  235: *>  and we can safely call DTBSV if 1/M(n) and 1/G(n) are both greater
  236: *>  than max(underflow, 1/overflow).
  237: *> \endverbatim
  238: *>
  239: *  =====================================================================
  240:       SUBROUTINE DLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
  241:      $                   SCALE, CNORM, INFO )
  242: *
  243: *  -- LAPACK auxiliary routine --
  244: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  245: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  246: *
  247: *     .. Scalar Arguments ..
  248:       CHARACTER          DIAG, NORMIN, TRANS, UPLO
  249:       INTEGER            INFO, KD, LDAB, N
  250:       DOUBLE PRECISION   SCALE
  251: *     ..
  252: *     .. Array Arguments ..
  253:       DOUBLE PRECISION   AB( LDAB, * ), CNORM( * ), X( * )
  254: *     ..
  255: *
  256: *  =====================================================================
  257: *
  258: *     .. Parameters ..
  259:       DOUBLE PRECISION   ZERO, HALF, ONE
  260:       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
  261: *     ..
  262: *     .. Local Scalars ..
  263:       LOGICAL            NOTRAN, NOUNIT, UPPER
  264:       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
  265:       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
  266:      $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
  267: *     ..
  268: *     .. External Functions ..
  269:       LOGICAL            LSAME
  270:       INTEGER            IDAMAX
  271:       DOUBLE PRECISION   DASUM, DDOT, DLAMCH
  272:       EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
  273: *     ..
  274: *     .. External Subroutines ..
  275:       EXTERNAL           DAXPY, DSCAL, DTBSV, XERBLA
  276: *     ..
  277: *     .. Intrinsic Functions ..
  278:       INTRINSIC          ABS, MAX, MIN
  279: *     ..
  280: *     .. Executable Statements ..
  281: *
  282:       INFO = 0
  283:       UPPER = LSAME( UPLO, 'U' )
  284:       NOTRAN = LSAME( TRANS, 'N' )
  285:       NOUNIT = LSAME( DIAG, 'N' )
  286: *
  287: *     Test the input parameters.
  288: *
  289:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  290:          INFO = -1
  291:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  292:      $         LSAME( TRANS, 'C' ) ) THEN
  293:          INFO = -2
  294:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  295:          INFO = -3
  296:       ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  297:      $         LSAME( NORMIN, 'N' ) ) THEN
  298:          INFO = -4
  299:       ELSE IF( N.LT.0 ) THEN
  300:          INFO = -5
  301:       ELSE IF( KD.LT.0 ) THEN
  302:          INFO = -6
  303:       ELSE IF( LDAB.LT.KD+1 ) THEN
  304:          INFO = -8
  305:       END IF
  306:       IF( INFO.NE.0 ) THEN
  307:          CALL XERBLA( 'DLATBS', -INFO )
  308:          RETURN
  309:       END IF
  310: *
  311: *     Quick return if possible
  312: *
  313:       SCALE = ONE
  314:       IF( N.EQ.0 )
  315:      $   RETURN
  316: *
  317: *     Determine machine dependent parameters to control overflow.
  318: *
  319:       SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
  320:       BIGNUM = ONE / SMLNUM
  321: *
  322:       IF( LSAME( NORMIN, 'N' ) ) THEN
  323: *
  324: *        Compute the 1-norm of each column, not including the diagonal.
  325: *
  326:          IF( UPPER ) THEN
  327: *
  328: *           A is upper triangular.
  329: *
  330:             DO 10 J = 1, N
  331:                JLEN = MIN( KD, J-1 )
  332:                CNORM( J ) = DASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
  333:    10       CONTINUE
  334:          ELSE
  335: *
  336: *           A is lower triangular.
  337: *
  338:             DO 20 J = 1, N
  339:                JLEN = MIN( KD, N-J )
  340:                IF( JLEN.GT.0 ) THEN
  341:                   CNORM( J ) = DASUM( JLEN, AB( 2, J ), 1 )
  342:                ELSE
  343:                   CNORM( J ) = ZERO
  344:                END IF
  345:    20       CONTINUE
  346:          END IF
  347:       END IF
  348: *
  349: *     Scale the column norms by TSCAL if the maximum element in CNORM is
  350: *     greater than BIGNUM.
  351: *
  352:       IMAX = IDAMAX( N, CNORM, 1 )
  353:       TMAX = CNORM( IMAX )
  354:       IF( TMAX.LE.BIGNUM ) THEN
  355:          TSCAL = ONE
  356:       ELSE
  357:          TSCAL = ONE / ( SMLNUM*TMAX )
  358:          CALL DSCAL( N, TSCAL, CNORM, 1 )
  359:       END IF
  360: *
  361: *     Compute a bound on the computed solution vector to see if the
  362: *     Level 2 BLAS routine DTBSV can be used.
  363: *
  364:       J = IDAMAX( N, X, 1 )
  365:       XMAX = ABS( X( J ) )
  366:       XBND = XMAX
  367:       IF( NOTRAN ) THEN
  368: *
  369: *        Compute the growth in A * x = b.
  370: *
  371:          IF( UPPER ) THEN
  372:             JFIRST = N
  373:             JLAST = 1
  374:             JINC = -1
  375:             MAIND = KD + 1
  376:          ELSE
  377:             JFIRST = 1
  378:             JLAST = N
  379:             JINC = 1
  380:             MAIND = 1
  381:          END IF
  382: *
  383:          IF( TSCAL.NE.ONE ) THEN
  384:             GROW = ZERO
  385:             GO TO 50
  386:          END IF
  387: *
  388:          IF( NOUNIT ) THEN
  389: *
  390: *           A is non-unit triangular.
  391: *
  392: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  393: *           Initially, G(0) = max{x(i), i=1,...,n}.
  394: *
  395:             GROW = ONE / MAX( XBND, SMLNUM )
  396:             XBND = GROW
  397:             DO 30 J = JFIRST, JLAST, JINC
  398: *
  399: *              Exit the loop if the growth factor is too small.
  400: *
  401:                IF( GROW.LE.SMLNUM )
  402:      $            GO TO 50
  403: *
  404: *              M(j) = G(j-1) / abs(A(j,j))
  405: *
  406:                TJJ = ABS( AB( MAIND, J ) )
  407:                XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  408:                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  409: *
  410: *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  411: *
  412:                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  413:                ELSE
  414: *
  415: *                 G(j) could overflow, set GROW to 0.
  416: *
  417:                   GROW = ZERO
  418:                END IF
  419:    30       CONTINUE
  420:             GROW = XBND
  421:          ELSE
  422: *
  423: *           A is unit triangular.
  424: *
  425: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  426: *
  427:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  428:             DO 40 J = JFIRST, JLAST, JINC
  429: *
  430: *              Exit the loop if the growth factor is too small.
  431: *
  432:                IF( GROW.LE.SMLNUM )
  433:      $            GO TO 50
  434: *
  435: *              G(j) = G(j-1)*( 1 + CNORM(j) )
  436: *
  437:                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  438:    40       CONTINUE
  439:          END IF
  440:    50    CONTINUE
  441: *
  442:       ELSE
  443: *
  444: *        Compute the growth in A**T * x = b.
  445: *
  446:          IF( UPPER ) THEN
  447:             JFIRST = 1
  448:             JLAST = N
  449:             JINC = 1
  450:             MAIND = KD + 1
  451:          ELSE
  452:             JFIRST = N
  453:             JLAST = 1
  454:             JINC = -1
  455:             MAIND = 1
  456:          END IF
  457: *
  458:          IF( TSCAL.NE.ONE ) THEN
  459:             GROW = ZERO
  460:             GO TO 80
  461:          END IF
  462: *
  463:          IF( NOUNIT ) THEN
  464: *
  465: *           A is non-unit triangular.
  466: *
  467: *           Compute GROW = 1/G(j) and XBND = 1/M(j).
  468: *           Initially, M(0) = max{x(i), i=1,...,n}.
  469: *
  470:             GROW = ONE / MAX( XBND, SMLNUM )
  471:             XBND = GROW
  472:             DO 60 J = JFIRST, JLAST, JINC
  473: *
  474: *              Exit the loop if the growth factor is too small.
  475: *
  476:                IF( GROW.LE.SMLNUM )
  477:      $            GO TO 80
  478: *
  479: *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  480: *
  481:                XJ = ONE + CNORM( J )
  482:                GROW = MIN( GROW, XBND / XJ )
  483: *
  484: *              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  485: *
  486:                TJJ = ABS( AB( MAIND, J ) )
  487:                IF( XJ.GT.TJJ )
  488:      $            XBND = XBND*( TJJ / XJ )
  489:    60       CONTINUE
  490:             GROW = MIN( GROW, XBND )
  491:          ELSE
  492: *
  493: *           A is unit triangular.
  494: *
  495: *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  496: *
  497:             GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
  498:             DO 70 J = JFIRST, JLAST, JINC
  499: *
  500: *              Exit the loop if the growth factor is too small.
  501: *
  502:                IF( GROW.LE.SMLNUM )
  503:      $            GO TO 80
  504: *
  505: *              G(j) = ( 1 + CNORM(j) )*G(j-1)
  506: *
  507:                XJ = ONE + CNORM( J )
  508:                GROW = GROW / XJ
  509:    70       CONTINUE
  510:          END IF
  511:    80    CONTINUE
  512:       END IF
  513: *
  514:       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  515: *
  516: *        Use the Level 2 BLAS solve if the reciprocal of the bound on
  517: *        elements of X is not too small.
  518: *
  519:          CALL DTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
  520:       ELSE
  521: *
  522: *        Use a Level 1 BLAS solve, scaling intermediate results.
  523: *
  524:          IF( XMAX.GT.BIGNUM ) THEN
  525: *
  526: *           Scale X so that its components are less than or equal to
  527: *           BIGNUM in absolute value.
  528: *
  529:             SCALE = BIGNUM / XMAX
  530:             CALL DSCAL( N, SCALE, X, 1 )
  531:             XMAX = BIGNUM
  532:          END IF
  533: *
  534:          IF( NOTRAN ) THEN
  535: *
  536: *           Solve A * x = b
  537: *
  538:             DO 110 J = JFIRST, JLAST, JINC
  539: *
  540: *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  541: *
  542:                XJ = ABS( X( J ) )
  543:                IF( NOUNIT ) THEN
  544:                   TJJS = AB( MAIND, J )*TSCAL
  545:                ELSE
  546:                   TJJS = TSCAL
  547:                   IF( TSCAL.EQ.ONE )
  548:      $               GO TO 100
  549:                END IF
  550:                TJJ = ABS( TJJS )
  551:                IF( TJJ.GT.SMLNUM ) THEN
  552: *
  553: *                    abs(A(j,j)) > SMLNUM:
  554: *
  555:                   IF( TJJ.LT.ONE ) THEN
  556:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  557: *
  558: *                          Scale x by 1/b(j).
  559: *
  560:                         REC = ONE / XJ
  561:                         CALL DSCAL( N, REC, X, 1 )
  562:                         SCALE = SCALE*REC
  563:                         XMAX = XMAX*REC
  564:                      END IF
  565:                   END IF
  566:                   X( J ) = X( J ) / TJJS
  567:                   XJ = ABS( X( J ) )
  568:                ELSE IF( TJJ.GT.ZERO ) THEN
  569: *
  570: *                    0 < abs(A(j,j)) <= SMLNUM:
  571: *
  572:                   IF( XJ.GT.TJJ*BIGNUM ) THEN
  573: *
  574: *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  575: *                       to avoid overflow when dividing by A(j,j).
  576: *
  577:                      REC = ( TJJ*BIGNUM ) / XJ
  578:                      IF( CNORM( J ).GT.ONE ) THEN
  579: *
  580: *                          Scale by 1/CNORM(j) to avoid overflow when
  581: *                          multiplying x(j) times column j.
  582: *
  583:                         REC = REC / CNORM( J )
  584:                      END IF
  585:                      CALL DSCAL( N, REC, X, 1 )
  586:                      SCALE = SCALE*REC
  587:                      XMAX = XMAX*REC
  588:                   END IF
  589:                   X( J ) = X( J ) / TJJS
  590:                   XJ = ABS( X( J ) )
  591:                ELSE
  592: *
  593: *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  594: *                    scale = 0, and compute a solution to A*x = 0.
  595: *
  596:                   DO 90 I = 1, N
  597:                      X( I ) = ZERO
  598:    90             CONTINUE
  599:                   X( J ) = ONE
  600:                   XJ = ONE
  601:                   SCALE = ZERO
  602:                   XMAX = ZERO
  603:                END IF
  604:   100          CONTINUE
  605: *
  606: *              Scale x if necessary to avoid overflow when adding a
  607: *              multiple of column j of A.
  608: *
  609:                IF( XJ.GT.ONE ) THEN
  610:                   REC = ONE / XJ
  611:                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  612: *
  613: *                    Scale x by 1/(2*abs(x(j))).
  614: *
  615:                      REC = REC*HALF
  616:                      CALL DSCAL( N, REC, X, 1 )
  617:                      SCALE = SCALE*REC
  618:                   END IF
  619:                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  620: *
  621: *                 Scale x by 1/2.
  622: *
  623:                   CALL DSCAL( N, HALF, X, 1 )
  624:                   SCALE = SCALE*HALF
  625:                END IF
  626: *
  627:                IF( UPPER ) THEN
  628:                   IF( J.GT.1 ) THEN
  629: *
  630: *                    Compute the update
  631: *                       x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
  632: *                                             x(j)* A(max(1,j-kd):j-1,j)
  633: *
  634:                      JLEN = MIN( KD, J-1 )
  635:                      CALL DAXPY( JLEN, -X( J )*TSCAL,
  636:      $                           AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
  637:                      I = IDAMAX( J-1, X, 1 )
  638:                      XMAX = ABS( X( I ) )
  639:                   END IF
  640:                ELSE IF( J.LT.N ) THEN
  641: *
  642: *                 Compute the update
  643: *                    x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
  644: *                                          x(j) * A(j+1:min(j+kd,n),j)
  645: *
  646:                   JLEN = MIN( KD, N-J )
  647:                   IF( JLEN.GT.0 )
  648:      $               CALL DAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
  649:      $                           X( J+1 ), 1 )
  650:                   I = J + IDAMAX( N-J, X( J+1 ), 1 )
  651:                   XMAX = ABS( X( I ) )
  652:                END IF
  653:   110       CONTINUE
  654: *
  655:          ELSE
  656: *
  657: *           Solve A**T * x = b
  658: *
  659:             DO 160 J = JFIRST, JLAST, JINC
  660: *
  661: *              Compute x(j) = b(j) - sum A(k,j)*x(k).
  662: *                                    k<>j
  663: *
  664:                XJ = ABS( X( J ) )
  665:                USCAL = TSCAL
  666:                REC = ONE / MAX( XMAX, ONE )
  667:                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  668: *
  669: *                 If x(j) could overflow, scale x by 1/(2*XMAX).
  670: *
  671:                   REC = REC*HALF
  672:                   IF( NOUNIT ) THEN
  673:                      TJJS = AB( MAIND, J )*TSCAL
  674:                   ELSE
  675:                      TJJS = TSCAL
  676:                   END IF
  677:                   TJJ = ABS( TJJS )
  678:                   IF( TJJ.GT.ONE ) THEN
  679: *
  680: *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
  681: *
  682:                      REC = MIN( ONE, REC*TJJ )
  683:                      USCAL = USCAL / TJJS
  684:                   END IF
  685:                   IF( REC.LT.ONE ) THEN
  686:                      CALL DSCAL( N, REC, X, 1 )
  687:                      SCALE = SCALE*REC
  688:                      XMAX = XMAX*REC
  689:                   END IF
  690:                END IF
  691: *
  692:                SUMJ = ZERO
  693:                IF( USCAL.EQ.ONE ) THEN
  694: *
  695: *                 If the scaling needed for A in the dot product is 1,
  696: *                 call DDOT to perform the dot product.
  697: *
  698:                   IF( UPPER ) THEN
  699:                      JLEN = MIN( KD, J-1 )
  700:                      SUMJ = DDOT( JLEN, AB( KD+1-JLEN, J ), 1,
  701:      $                      X( J-JLEN ), 1 )
  702:                   ELSE
  703:                      JLEN = MIN( KD, N-J )
  704:                      IF( JLEN.GT.0 )
  705:      $                  SUMJ = DDOT( JLEN, AB( 2, J ), 1, X( J+1 ), 1 )
  706:                   END IF
  707:                ELSE
  708: *
  709: *                 Otherwise, use in-line code for the dot product.
  710: *
  711:                   IF( UPPER ) THEN
  712:                      JLEN = MIN( KD, J-1 )
  713:                      DO 120 I = 1, JLEN
  714:                         SUMJ = SUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
  715:      $                         X( J-JLEN-1+I )
  716:   120                CONTINUE
  717:                   ELSE
  718:                      JLEN = MIN( KD, N-J )
  719:                      DO 130 I = 1, JLEN
  720:                         SUMJ = SUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
  721:   130                CONTINUE
  722:                   END IF
  723:                END IF
  724: *
  725:                IF( USCAL.EQ.TSCAL ) THEN
  726: *
  727: *                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
  728: *                 was not used to scale the dotproduct.
  729: *
  730:                   X( J ) = X( J ) - SUMJ
  731:                   XJ = ABS( X( J ) )
  732:                   IF( NOUNIT ) THEN
  733: *
  734: *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
  735: *
  736:                      TJJS = AB( MAIND, J )*TSCAL
  737:                   ELSE
  738:                      TJJS = TSCAL
  739:                      IF( TSCAL.EQ.ONE )
  740:      $                  GO TO 150
  741:                   END IF
  742:                   TJJ = ABS( TJJS )
  743:                   IF( TJJ.GT.SMLNUM ) THEN
  744: *
  745: *                       abs(A(j,j)) > SMLNUM:
  746: *
  747:                      IF( TJJ.LT.ONE ) THEN
  748:                         IF( XJ.GT.TJJ*BIGNUM ) THEN
  749: *
  750: *                             Scale X by 1/abs(x(j)).
  751: *
  752:                            REC = ONE / XJ
  753:                            CALL DSCAL( N, REC, X, 1 )
  754:                            SCALE = SCALE*REC
  755:                            XMAX = XMAX*REC
  756:                         END IF
  757:                      END IF
  758:                      X( J ) = X( J ) / TJJS
  759:                   ELSE IF( TJJ.GT.ZERO ) THEN
  760: *
  761: *                       0 < abs(A(j,j)) <= SMLNUM:
  762: *
  763:                      IF( XJ.GT.TJJ*BIGNUM ) THEN
  764: *
  765: *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  766: *
  767:                         REC = ( TJJ*BIGNUM ) / XJ
  768:                         CALL DSCAL( N, REC, X, 1 )
  769:                         SCALE = SCALE*REC
  770:                         XMAX = XMAX*REC
  771:                      END IF
  772:                      X( J ) = X( J ) / TJJS
  773:                   ELSE
  774: *
  775: *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
  776: *                       scale = 0, and compute a solution to A**T*x = 0.
  777: *
  778:                      DO 140 I = 1, N
  779:                         X( I ) = ZERO
  780:   140                CONTINUE
  781:                      X( J ) = ONE
  782:                      SCALE = ZERO
  783:                      XMAX = ZERO
  784:                   END IF
  785:   150             CONTINUE
  786:                ELSE
  787: *
  788: *                 Compute x(j) := x(j) / A(j,j) - sumj if the dot
  789: *                 product has already been divided by 1/A(j,j).
  790: *
  791:                   X( J ) = X( J ) / TJJS - SUMJ
  792:                END IF
  793:                XMAX = MAX( XMAX, ABS( X( J ) ) )
  794:   160       CONTINUE
  795:          END IF
  796:          SCALE = SCALE / TSCAL
  797:       END IF
  798: *
  799: *     Scale the column norms by 1/TSCAL for return.
  800: *
  801:       IF( TSCAL.NE.ONE ) THEN
  802:          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  803:       END IF
  804: *
  805:       RETURN
  806: *
  807: *     End of DLATBS
  808: *
  809:       END

CVSweb interface <joel.bertrand@systella.fr>