File:  [local] / rpl / lapack / lapack / dlasyf_rk.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:02:50 2017 UTC (6 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Ajout des nouveaux fichiers pour lapack 3.7.0.

    1: *> \brief \b DLASYF_RK computes a partial factorization of a real symmetric indefinite matrix using bounded Bunch-Kaufman (rook) diagonal pivoting method.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLASYF_RK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf_rk.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf_rk.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf_rk.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
   22: *                             INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), E( * ), W( LDW, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *> DLASYF_RK computes a partial factorization of a real symmetric
   39: *> matrix A using the bounded Bunch-Kaufman (rook) diagonal
   40: *> pivoting method. The partial factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
   44: *>
   45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L',
   46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *>
   51: *> DLASYF_RK is an auxiliary routine called by DSYTRF_RK. It uses
   52: *> blocked code (calling Level 3 BLAS) to update the submatrix
   53: *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          Specifies whether the upper or lower triangular part of the
   63: *>          symmetric matrix A is stored:
   64: *>          = 'U':  Upper triangular
   65: *>          = 'L':  Lower triangular
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrix A.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] NB
   75: *> \verbatim
   76: *>          NB is INTEGER
   77: *>          The maximum number of columns of the matrix A that should be
   78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   79: *>          blocks.
   80: *> \endverbatim
   81: *>
   82: *> \param[out] KB
   83: *> \verbatim
   84: *>          KB is INTEGER
   85: *>          The number of columns of A that were actually factored.
   86: *>          KB is either NB-1 or NB, or N if N <= NB.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] A
   90: *> \verbatim
   91: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   92: *>          On entry, the symmetric matrix A.
   93: *>            If UPLO = 'U': the leading N-by-N upper triangular part
   94: *>            of A contains the upper triangular part of the matrix A,
   95: *>            and the strictly lower triangular part of A is not
   96: *>            referenced.
   97: *>
   98: *>            If UPLO = 'L': the leading N-by-N lower triangular part
   99: *>            of A contains the lower triangular part of the matrix A,
  100: *>            and the strictly upper triangular part of A is not
  101: *>            referenced.
  102: *>
  103: *>          On exit, contains:
  104: *>            a) ONLY diagonal elements of the symmetric block diagonal
  105: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
  106: *>               (superdiagonal (or subdiagonal) elements of D
  107: *>                are stored on exit in array E), and
  108: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
  109: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDA
  113: *> \verbatim
  114: *>          LDA is INTEGER
  115: *>          The leading dimension of the array A.  LDA >= max(1,N).
  116: *> \endverbatim
  117: *>
  118: *> \param[out] E
  119: *> \verbatim
  120: *>          E is DOUBLE PRECISION array, dimension (N)
  121: *>          On exit, contains the superdiagonal (or subdiagonal)
  122: *>          elements of the symmetric block diagonal matrix D
  123: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
  124: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
  125: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
  126: *>
  127: *>          NOTE: For 1-by-1 diagonal block D(k), where
  128: *>          1 <= k <= N, the element E(k) is set to 0 in both
  129: *>          UPLO = 'U' or UPLO = 'L' cases.
  130: *> \endverbatim
  131: *>
  132: *> \param[out] IPIV
  133: *> \verbatim
  134: *>          IPIV is INTEGER array, dimension (N)
  135: *>          IPIV describes the permutation matrix P in the factorization
  136: *>          of matrix A as follows. The absolute value of IPIV(k)
  137: *>          represents the index of row and column that were
  138: *>          interchanged with the k-th row and column. The value of UPLO
  139: *>          describes the order in which the interchanges were applied.
  140: *>          Also, the sign of IPIV represents the block structure of
  141: *>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
  142: *>          diagonal blocks which correspond to 1 or 2 interchanges
  143: *>          at each factorization step.
  144: *>
  145: *>          If UPLO = 'U',
  146: *>          ( in factorization order, k decreases from N to 1 ):
  147: *>            a) A single positive entry IPIV(k) > 0 means:
  148: *>               D(k,k) is a 1-by-1 diagonal block.
  149: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  150: *>               interchanged in the submatrix A(1:N,N-KB+1:N);
  151: *>               If IPIV(k) = k, no interchange occurred.
  152: *>
  153: *>
  154: *>            b) A pair of consecutive negative entries
  155: *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
  156: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  157: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  158: *>               1) If -IPIV(k) != k, rows and columns
  159: *>                  k and -IPIV(k) were interchanged
  160: *>                  in the matrix A(1:N,N-KB+1:N).
  161: *>                  If -IPIV(k) = k, no interchange occurred.
  162: *>               2) If -IPIV(k-1) != k-1, rows and columns
  163: *>                  k-1 and -IPIV(k-1) were interchanged
  164: *>                  in the submatrix A(1:N,N-KB+1:N).
  165: *>                  If -IPIV(k-1) = k-1, no interchange occurred.
  166: *>
  167: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.
  168: *>
  169: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  170: *>
  171: *>          If UPLO = 'L',
  172: *>          ( in factorization order, k increases from 1 to N ):
  173: *>            a) A single positive entry IPIV(k) > 0 means:
  174: *>               D(k,k) is a 1-by-1 diagonal block.
  175: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  176: *>               interchanged in the submatrix A(1:N,1:KB).
  177: *>               If IPIV(k) = k, no interchange occurred.
  178: *>
  179: *>            b) A pair of consecutive negative entries
  180: *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
  181: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  182: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  183: *>               1) If -IPIV(k) != k, rows and columns
  184: *>                  k and -IPIV(k) were interchanged
  185: *>                  in the submatrix A(1:N,1:KB).
  186: *>                  If -IPIV(k) = k, no interchange occurred.
  187: *>               2) If -IPIV(k+1) != k+1, rows and columns
  188: *>                  k-1 and -IPIV(k-1) were interchanged
  189: *>                  in the submatrix A(1:N,1:KB).
  190: *>                  If -IPIV(k+1) = k+1, no interchange occurred.
  191: *>
  192: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.
  193: *>
  194: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  195: *> \endverbatim
  196: *>
  197: *> \param[out] W
  198: *> \verbatim
  199: *>          W is DOUBLE PRECISION array, dimension (LDW,NB)
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDW
  203: *> \verbatim
  204: *>          LDW is INTEGER
  205: *>          The leading dimension of the array W.  LDW >= max(1,N).
  206: *> \endverbatim
  207: *>
  208: *> \param[out] INFO
  209: *> \verbatim
  210: *>          INFO is INTEGER
  211: *>          = 0: successful exit
  212: *>
  213: *>          < 0: If INFO = -k, the k-th argument had an illegal value
  214: *>
  215: *>          > 0: If INFO = k, the matrix A is singular, because:
  216: *>                 If UPLO = 'U': column k in the upper
  217: *>                 triangular part of A contains all zeros.
  218: *>                 If UPLO = 'L': column k in the lower
  219: *>                 triangular part of A contains all zeros.
  220: *>
  221: *>               Therefore D(k,k) is exactly zero, and superdiagonal
  222: *>               elements of column k of U (or subdiagonal elements of
  223: *>               column k of L ) are all zeros. The factorization has
  224: *>               been completed, but the block diagonal matrix D is
  225: *>               exactly singular, and division by zero will occur if
  226: *>               it is used to solve a system of equations.
  227: *>
  228: *>               NOTE: INFO only stores the first occurrence of
  229: *>               a singularity, any subsequent occurrence of singularity
  230: *>               is not stored in INFO even though the factorization
  231: *>               always completes.
  232: *> \endverbatim
  233: *
  234: *  Authors:
  235: *  ========
  236: *
  237: *> \author Univ. of Tennessee
  238: *> \author Univ. of California Berkeley
  239: *> \author Univ. of Colorado Denver
  240: *> \author NAG Ltd.
  241: *
  242: *> \date December 2016
  243: *
  244: *> \ingroup doubleSYcomputational
  245: *
  246: *> \par Contributors:
  247: *  ==================
  248: *>
  249: *> \verbatim
  250: *>
  251: *>  December 2016,  Igor Kozachenko,
  252: *>                  Computer Science Division,
  253: *>                  University of California, Berkeley
  254: *>
  255: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  256: *>                  School of Mathematics,
  257: *>                  University of Manchester
  258: *>
  259: *> \endverbatim
  260: *
  261: *  =====================================================================
  262:       SUBROUTINE DLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
  263:      $                      INFO )
  264: *
  265: *  -- LAPACK computational routine (version 3.7.0) --
  266: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  267: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  268: *     December 2016
  269: *
  270: *     .. Scalar Arguments ..
  271:       CHARACTER          UPLO
  272:       INTEGER            INFO, KB, LDA, LDW, N, NB
  273: *     ..
  274: *     .. Array Arguments ..
  275:       INTEGER            IPIV( * )
  276:       DOUBLE PRECISION   A( LDA, * ), E( * ), W( LDW, * )
  277: *     ..
  278: *
  279: *  =====================================================================
  280: *
  281: *     .. Parameters ..
  282:       DOUBLE PRECISION   ZERO, ONE
  283:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  284:       DOUBLE PRECISION   EIGHT, SEVTEN
  285:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  286: *     ..
  287: *     .. Local Scalars ..
  288:       LOGICAL            DONE
  289:       INTEGER            IMAX, ITEMP, J, JB, JJ, JMAX, K, KK, KW, KKW,
  290:      $                   KP, KSTEP, P, II
  291:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22,
  292:      $                   DTEMP, R1, ROWMAX, T, SFMIN
  293: *     ..
  294: *     .. External Functions ..
  295:       LOGICAL            LSAME
  296:       INTEGER            IDAMAX
  297:       DOUBLE PRECISION   DLAMCH
  298:       EXTERNAL           LSAME, IDAMAX, DLAMCH
  299: *     ..
  300: *     .. External Subroutines ..
  301:       EXTERNAL           DCOPY, DGEMM, DGEMV, DSCAL, DSWAP
  302: *     ..
  303: *     .. Intrinsic Functions ..
  304:       INTRINSIC          ABS, MAX, MIN, SQRT
  305: *     ..
  306: *     .. Executable Statements ..
  307: *
  308:       INFO = 0
  309: *
  310: *     Initialize ALPHA for use in choosing pivot block size.
  311: *
  312:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  313: *
  314: *     Compute machine safe minimum
  315: *
  316:       SFMIN = DLAMCH( 'S' )
  317: *
  318:       IF( LSAME( UPLO, 'U' ) ) THEN
  319: *
  320: *        Factorize the trailing columns of A using the upper triangle
  321: *        of A and working backwards, and compute the matrix W = U12*D
  322: *        for use in updating A11
  323: *
  324: *        Initilize the first entry of array E, where superdiagonal
  325: *        elements of D are stored
  326: *
  327:          E( 1 ) = ZERO
  328: *
  329: *        K is the main loop index, decreasing from N in steps of 1 or 2
  330: *
  331:          K = N
  332:    10    CONTINUE
  333: *
  334: *        KW is the column of W which corresponds to column K of A
  335: *
  336:          KW = NB + K - N
  337: *
  338: *        Exit from loop
  339: *
  340:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  341:      $      GO TO 30
  342: *
  343:          KSTEP = 1
  344:          P = K
  345: *
  346: *        Copy column K of A to column KW of W and update it
  347: *
  348:          CALL DCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  349:          IF( K.LT.N )
  350:      $      CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ),
  351:      $                  LDA, W( K, KW+1 ), LDW, ONE, W( 1, KW ), 1 )
  352: *
  353: *        Determine rows and columns to be interchanged and whether
  354: *        a 1-by-1 or 2-by-2 pivot block will be used
  355: *
  356:          ABSAKK = ABS( W( K, KW ) )
  357: *
  358: *        IMAX is the row-index of the largest off-diagonal element in
  359: *        column K, and COLMAX is its absolute value.
  360: *        Determine both COLMAX and IMAX.
  361: *
  362:          IF( K.GT.1 ) THEN
  363:             IMAX = IDAMAX( K-1, W( 1, KW ), 1 )
  364:             COLMAX = ABS( W( IMAX, KW ) )
  365:          ELSE
  366:             COLMAX = ZERO
  367:          END IF
  368: *
  369:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  370: *
  371: *           Column K is zero or underflow: set INFO and continue
  372: *
  373:             IF( INFO.EQ.0 )
  374:      $         INFO = K
  375:             KP = K
  376:             CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  377: *
  378: *           Set E( K ) to zero
  379: *
  380:             IF( K.GT.1 )
  381:      $         E( K ) = ZERO
  382: *
  383:          ELSE
  384: *
  385: *           ============================================================
  386: *
  387: *           Test for interchange
  388: *
  389: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  390: *           (used to handle NaN and Inf)
  391: *
  392:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  393: *
  394: *              no interchange, use 1-by-1 pivot block
  395: *
  396:                KP = K
  397: *
  398:             ELSE
  399: *
  400:                DONE = .FALSE.
  401: *
  402: *              Loop until pivot found
  403: *
  404:    12          CONTINUE
  405: *
  406: *                 Begin pivot search loop body
  407: *
  408: *
  409: *                 Copy column IMAX to column KW-1 of W and update it
  410: *
  411:                   CALL DCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  412:                   CALL DCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  413:      $                        W( IMAX+1, KW-1 ), 1 )
  414: *
  415:                   IF( K.LT.N )
  416:      $               CALL DGEMV( 'No transpose', K, N-K, -ONE,
  417:      $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  418:      $                           ONE, W( 1, KW-1 ), 1 )
  419: *
  420: *                 JMAX is the column-index of the largest off-diagonal
  421: *                 element in row IMAX, and ROWMAX is its absolute value.
  422: *                 Determine both ROWMAX and JMAX.
  423: *
  424:                   IF( IMAX.NE.K ) THEN
  425:                      JMAX = IMAX + IDAMAX( K-IMAX, W( IMAX+1, KW-1 ),
  426:      $                                     1 )
  427:                      ROWMAX = ABS( W( JMAX, KW-1 ) )
  428:                   ELSE
  429:                      ROWMAX = ZERO
  430:                   END IF
  431: *
  432:                   IF( IMAX.GT.1 ) THEN
  433:                      ITEMP = IDAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  434:                      DTEMP = ABS( W( ITEMP, KW-1 ) )
  435:                      IF( DTEMP.GT.ROWMAX ) THEN
  436:                         ROWMAX = DTEMP
  437:                         JMAX = ITEMP
  438:                      END IF
  439:                   END IF
  440: *
  441: *                 Equivalent to testing for
  442: *                 ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
  443: *                 (used to handle NaN and Inf)
  444: *
  445:                   IF( .NOT.(ABS( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
  446:      $            THEN
  447: *
  448: *                    interchange rows and columns K and IMAX,
  449: *                    use 1-by-1 pivot block
  450: *
  451:                      KP = IMAX
  452: *
  453: *                    copy column KW-1 of W to column KW of W
  454: *
  455:                      CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  456: *
  457:                      DONE = .TRUE.
  458: *
  459: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  460: *                 (used to handle NaN and Inf)
  461: *
  462:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  463:      $            THEN
  464: *
  465: *                    interchange rows and columns K-1 and IMAX,
  466: *                    use 2-by-2 pivot block
  467: *
  468:                      KP = IMAX
  469:                      KSTEP = 2
  470:                      DONE = .TRUE.
  471:                   ELSE
  472: *
  473: *                    Pivot not found: set params and repeat
  474: *
  475:                      P = IMAX
  476:                      COLMAX = ROWMAX
  477:                      IMAX = JMAX
  478: *
  479: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  480: *
  481:                      CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  482: *
  483:                   END IF
  484: *
  485: *                 End pivot search loop body
  486: *
  487:                IF( .NOT. DONE ) GOTO 12
  488: *
  489:             END IF
  490: *
  491: *           ============================================================
  492: *
  493:             KK = K - KSTEP + 1
  494: *
  495: *           KKW is the column of W which corresponds to column KK of A
  496: *
  497:             KKW = NB + KK - N
  498: *
  499:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  500: *
  501: *              Copy non-updated column K to column P
  502: *
  503:                CALL DCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
  504:                CALL DCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
  505: *
  506: *              Interchange rows K and P in last N-K+1 columns of A
  507: *              and last N-K+2 columns of W
  508: *
  509:                CALL DSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
  510:                CALL DSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
  511:             END IF
  512: *
  513: *           Updated column KP is already stored in column KKW of W
  514: *
  515:             IF( KP.NE.KK ) THEN
  516: *
  517: *              Copy non-updated column KK to column KP
  518: *
  519:                A( KP, K ) = A( KK, K )
  520:                CALL DCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  521:      $                     LDA )
  522:                CALL DCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
  523: *
  524: *              Interchange rows KK and KP in last N-KK+1 columns
  525: *              of A and W
  526: *
  527:                CALL DSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
  528:                CALL DSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  529:      $                     LDW )
  530:             END IF
  531: *
  532:             IF( KSTEP.EQ.1 ) THEN
  533: *
  534: *              1-by-1 pivot block D(k): column KW of W now holds
  535: *
  536: *              W(k) = U(k)*D(k)
  537: *
  538: *              where U(k) is the k-th column of U
  539: *
  540: *              Store U(k) in column k of A
  541: *
  542:                CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  543:                IF( K.GT.1 ) THEN
  544:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
  545:                      R1 = ONE / A( K, K )
  546:                      CALL DSCAL( K-1, R1, A( 1, K ), 1 )
  547:                   ELSE IF( A( K, K ).NE.ZERO ) THEN
  548:                      DO 14 II = 1, K - 1
  549:                         A( II, K ) = A( II, K ) / A( K, K )
  550:    14                CONTINUE
  551:                   END IF
  552: *
  553: *                 Store the superdiagonal element of D in array E
  554: *
  555:                   E( K ) = ZERO
  556: *
  557:                END IF
  558: *
  559:             ELSE
  560: *
  561: *              2-by-2 pivot block D(k): columns KW and KW-1 of W now
  562: *              hold
  563: *
  564: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  565: *
  566: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  567: *              of U
  568: *
  569:                IF( K.GT.2 ) THEN
  570: *
  571: *                 Store U(k) and U(k-1) in columns k and k-1 of A
  572: *
  573:                   D12 = W( K-1, KW )
  574:                   D11 = W( K, KW ) / D12
  575:                   D22 = W( K-1, KW-1 ) / D12
  576:                   T = ONE / ( D11*D22-ONE )
  577:                   DO 20 J = 1, K - 2
  578:                      A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
  579:      $                             D12 )
  580:                      A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
  581:      $                           D12 )
  582:    20             CONTINUE
  583:                END IF
  584: *
  585: *              Copy diagonal elements of D(K) to A,
  586: *              copy superdiagonal element of D(K) to E(K) and
  587: *              ZERO out superdiagonal entry of A
  588: *
  589:                A( K-1, K-1 ) = W( K-1, KW-1 )
  590:                A( K-1, K ) = ZERO
  591:                A( K, K ) = W( K, KW )
  592:                E( K ) = W( K-1, KW )
  593:                E( K-1 ) = ZERO
  594: *
  595:             END IF
  596: *
  597: *           End column K is nonsingular
  598: *
  599:          END IF
  600: *
  601: *        Store details of the interchanges in IPIV
  602: *
  603:          IF( KSTEP.EQ.1 ) THEN
  604:             IPIV( K ) = KP
  605:          ELSE
  606:             IPIV( K ) = -P
  607:             IPIV( K-1 ) = -KP
  608:          END IF
  609: *
  610: *        Decrease K and return to the start of the main loop
  611: *
  612:          K = K - KSTEP
  613:          GO TO 10
  614: *
  615:    30    CONTINUE
  616: *
  617: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  618: *
  619: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
  620: *
  621: *        computing blocks of NB columns at a time
  622: *
  623:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  624:             JB = MIN( NB, K-J+1 )
  625: *
  626: *           Update the upper triangle of the diagonal block
  627: *
  628:             DO 40 JJ = J, J + JB - 1
  629:                CALL DGEMV( 'No transpose', JJ-J+1, N-K, -ONE,
  630:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, ONE,
  631:      $                     A( J, JJ ), 1 )
  632:    40       CONTINUE
  633: *
  634: *           Update the rectangular superdiagonal block
  635: *
  636:             IF( J.GE.2 )
  637:      $         CALL DGEMM( 'No transpose', 'Transpose', J-1, JB,
  638:      $                  N-K, -ONE, A( 1, K+1 ), LDA, W( J, KW+1 ),
  639:      $                  LDW, ONE, A( 1, J ), LDA )
  640:    50    CONTINUE
  641: *
  642: *        Set KB to the number of columns factorized
  643: *
  644:          KB = N - K
  645: *
  646:       ELSE
  647: *
  648: *        Factorize the leading columns of A using the lower triangle
  649: *        of A and working forwards, and compute the matrix W = L21*D
  650: *        for use in updating A22
  651: *
  652: *        Initilize the unused last entry of the subdiagonal array E.
  653: *
  654:          E( N ) = ZERO
  655: *
  656: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  657: *
  658:          K = 1
  659:    70   CONTINUE
  660: *
  661: *        Exit from loop
  662: *
  663:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  664:      $      GO TO 90
  665: *
  666:          KSTEP = 1
  667:          P = K
  668: *
  669: *        Copy column K of A to column K of W and update it
  670: *
  671:          CALL DCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  672:          IF( K.GT.1 )
  673:      $      CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ),
  674:      $                  LDA, W( K, 1 ), LDW, ONE, W( K, K ), 1 )
  675: *
  676: *        Determine rows and columns to be interchanged and whether
  677: *        a 1-by-1 or 2-by-2 pivot block will be used
  678: *
  679:          ABSAKK = ABS( W( K, K ) )
  680: *
  681: *        IMAX is the row-index of the largest off-diagonal element in
  682: *        column K, and COLMAX is its absolute value.
  683: *        Determine both COLMAX and IMAX.
  684: *
  685:          IF( K.LT.N ) THEN
  686:             IMAX = K + IDAMAX( N-K, W( K+1, K ), 1 )
  687:             COLMAX = ABS( W( IMAX, K ) )
  688:          ELSE
  689:             COLMAX = ZERO
  690:          END IF
  691: *
  692:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  693: *
  694: *           Column K is zero or underflow: set INFO and continue
  695: *
  696:             IF( INFO.EQ.0 )
  697:      $         INFO = K
  698:             KP = K
  699:             CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  700: *
  701: *           Set E( K ) to zero
  702: *
  703:             IF( K.LT.N )
  704:      $         E( K ) = ZERO
  705: *
  706:          ELSE
  707: *
  708: *           ============================================================
  709: *
  710: *           Test for interchange
  711: *
  712: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  713: *           (used to handle NaN and Inf)
  714: *
  715:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  716: *
  717: *              no interchange, use 1-by-1 pivot block
  718: *
  719:                KP = K
  720: *
  721:             ELSE
  722: *
  723:                DONE = .FALSE.
  724: *
  725: *              Loop until pivot found
  726: *
  727:    72          CONTINUE
  728: *
  729: *                 Begin pivot search loop body
  730: *
  731: *
  732: *                 Copy column IMAX to column K+1 of W and update it
  733: *
  734:                   CALL DCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
  735:                   CALL DCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
  736:      $                        W( IMAX, K+1 ), 1 )
  737:                   IF( K.GT.1 )
  738:      $               CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE,
  739:      $                           A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
  740:      $                           ONE, W( K, K+1 ), 1 )
  741: *
  742: *                 JMAX is the column-index of the largest off-diagonal
  743: *                 element in row IMAX, and ROWMAX is its absolute value.
  744: *                 Determine both ROWMAX and JMAX.
  745: *
  746:                   IF( IMAX.NE.K ) THEN
  747:                      JMAX = K - 1 + IDAMAX( IMAX-K, W( K, K+1 ), 1 )
  748:                      ROWMAX = ABS( W( JMAX, K+1 ) )
  749:                   ELSE
  750:                      ROWMAX = ZERO
  751:                   END IF
  752: *
  753:                   IF( IMAX.LT.N ) THEN
  754:                      ITEMP = IMAX + IDAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
  755:                      DTEMP = ABS( W( ITEMP, K+1 ) )
  756:                      IF( DTEMP.GT.ROWMAX ) THEN
  757:                         ROWMAX = DTEMP
  758:                         JMAX = ITEMP
  759:                      END IF
  760:                   END IF
  761: *
  762: *                 Equivalent to testing for
  763: *                 ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
  764: *                 (used to handle NaN and Inf)
  765: *
  766:                   IF( .NOT.( ABS( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
  767:      $            THEN
  768: *
  769: *                    interchange rows and columns K and IMAX,
  770: *                    use 1-by-1 pivot block
  771: *
  772:                      KP = IMAX
  773: *
  774: *                    copy column K+1 of W to column K of W
  775: *
  776:                      CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  777: *
  778:                      DONE = .TRUE.
  779: *
  780: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  781: *                 (used to handle NaN and Inf)
  782: *
  783:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  784:      $            THEN
  785: *
  786: *                    interchange rows and columns K+1 and IMAX,
  787: *                    use 2-by-2 pivot block
  788: *
  789:                      KP = IMAX
  790:                      KSTEP = 2
  791:                      DONE = .TRUE.
  792:                   ELSE
  793: *
  794: *                    Pivot not found: set params and repeat
  795: *
  796:                      P = IMAX
  797:                      COLMAX = ROWMAX
  798:                      IMAX = JMAX
  799: *
  800: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  801: *
  802:                      CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  803: *
  804:                   END IF
  805: *
  806: *                 End pivot search loop body
  807: *
  808:                IF( .NOT. DONE ) GOTO 72
  809: *
  810:             END IF
  811: *
  812: *           ============================================================
  813: *
  814:             KK = K + KSTEP - 1
  815: *
  816:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  817: *
  818: *              Copy non-updated column K to column P
  819: *
  820:                CALL DCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
  821:                CALL DCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
  822: *
  823: *              Interchange rows K and P in first K columns of A
  824: *              and first K+1 columns of W
  825: *
  826:                CALL DSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
  827:                CALL DSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
  828:             END IF
  829: *
  830: *           Updated column KP is already stored in column KK of W
  831: *
  832:             IF( KP.NE.KK ) THEN
  833: *
  834: *              Copy non-updated column KK to column KP
  835: *
  836:                A( KP, K ) = A( KK, K )
  837:                CALL DCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
  838:                CALL DCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
  839: *
  840: *              Interchange rows KK and KP in first KK columns of A and W
  841: *
  842:                CALL DSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  843:                CALL DSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  844:             END IF
  845: *
  846:             IF( KSTEP.EQ.1 ) THEN
  847: *
  848: *              1-by-1 pivot block D(k): column k of W now holds
  849: *
  850: *              W(k) = L(k)*D(k)
  851: *
  852: *              where L(k) is the k-th column of L
  853: *
  854: *              Store L(k) in column k of A
  855: *
  856:                CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  857:                IF( K.LT.N ) THEN
  858:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
  859:                      R1 = ONE / A( K, K )
  860:                      CALL DSCAL( N-K, R1, A( K+1, K ), 1 )
  861:                   ELSE IF( A( K, K ).NE.ZERO ) THEN
  862:                      DO 74 II = K + 1, N
  863:                         A( II, K ) = A( II, K ) / A( K, K )
  864:    74                CONTINUE
  865:                   END IF
  866: *
  867: *                 Store the subdiagonal element of D in array E
  868: *
  869:                   E( K ) = ZERO
  870: *
  871:                END IF
  872: *
  873:             ELSE
  874: *
  875: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  876: *
  877: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  878: *
  879: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  880: *              of L
  881: *
  882:                IF( K.LT.N-1 ) THEN
  883: *
  884: *                 Store L(k) and L(k+1) in columns k and k+1 of A
  885: *
  886:                   D21 = W( K+1, K )
  887:                   D11 = W( K+1, K+1 ) / D21
  888:                   D22 = W( K, K ) / D21
  889:                   T = ONE / ( D11*D22-ONE )
  890:                   DO 80 J = K + 2, N
  891:                      A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
  892:      $                           D21 )
  893:                      A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
  894:      $                             D21 )
  895:    80             CONTINUE
  896:                END IF
  897: *
  898: *              Copy diagonal elements of D(K) to A,
  899: *              copy subdiagonal element of D(K) to E(K) and
  900: *              ZERO out subdiagonal entry of A
  901: *
  902:                A( K, K ) = W( K, K )
  903:                A( K+1, K ) = ZERO
  904:                A( K+1, K+1 ) = W( K+1, K+1 )
  905:                E( K ) = W( K+1, K )
  906:                E( K+1 ) = ZERO
  907: *
  908:             END IF
  909: *
  910: *           End column K is nonsingular
  911: *
  912:          END IF
  913: *
  914: *        Store details of the interchanges in IPIV
  915: *
  916:          IF( KSTEP.EQ.1 ) THEN
  917:             IPIV( K ) = KP
  918:          ELSE
  919:             IPIV( K ) = -P
  920:             IPIV( K+1 ) = -KP
  921:          END IF
  922: *
  923: *        Increase K and return to the start of the main loop
  924: *
  925:          K = K + KSTEP
  926:          GO TO 70
  927: *
  928:    90    CONTINUE
  929: *
  930: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
  931: *
  932: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
  933: *
  934: *        computing blocks of NB columns at a time
  935: *
  936:          DO 110 J = K, N, NB
  937:             JB = MIN( NB, N-J+1 )
  938: *
  939: *           Update the lower triangle of the diagonal block
  940: *
  941:             DO 100 JJ = J, J + JB - 1
  942:                CALL DGEMV( 'No transpose', J+JB-JJ, K-1, -ONE,
  943:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, ONE,
  944:      $                     A( JJ, JJ ), 1 )
  945:   100       CONTINUE
  946: *
  947: *           Update the rectangular subdiagonal block
  948: *
  949:             IF( J+JB.LE.N )
  950:      $         CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  951:      $                     K-1, -ONE, A( J+JB, 1 ), LDA, W( J, 1 ),
  952:      $                     LDW, ONE, A( J+JB, J ), LDA )
  953:   110    CONTINUE
  954: *
  955: *        Set KB to the number of columns factorized
  956: *
  957:          KB = K - 1
  958: *
  959:       END IF
  960: *
  961:       RETURN
  962: *
  963: *     End of DLASYF_RK
  964: *
  965:       END

CVSweb interface <joel.bertrand@systella.fr>