Annotation of rpl/lapack/lapack/dlasyf_rk.f, revision 1.5

1.1       bertrand    1: *> \brief \b DLASYF_RK computes a partial factorization of a real symmetric indefinite matrix using bounded Bunch-Kaufman (rook) diagonal pivoting method.
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLASYF_RK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf_rk.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf_rk.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf_rk.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
                     22: *                             INFO )
                     23: *
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, KB, LDA, LDW, N, NB
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), E( * ), W( LDW, * )
                     31: *       ..
                     32: *
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *> DLASYF_RK computes a partial factorization of a real symmetric
                     39: *> matrix A using the bounded Bunch-Kaufman (rook) diagonal
                     40: *> pivoting method. The partial factorization has the form:
                     41: *>
                     42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                     43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
                     44: *>
                     45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L',
                     46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
                     47: *>
                     48: *> where the order of D is at most NB. The actual order is returned in
                     49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
                     50: *>
                     51: *> DLASYF_RK is an auxiliary routine called by DSYTRF_RK. It uses
                     52: *> blocked code (calling Level 3 BLAS) to update the submatrix
                     53: *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
                     54: *> \endverbatim
                     55: *
                     56: *  Arguments:
                     57: *  ==========
                     58: *
                     59: *> \param[in] UPLO
                     60: *> \verbatim
                     61: *>          UPLO is CHARACTER*1
                     62: *>          Specifies whether the upper or lower triangular part of the
                     63: *>          symmetric matrix A is stored:
                     64: *>          = 'U':  Upper triangular
                     65: *>          = 'L':  Lower triangular
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] N
                     69: *> \verbatim
                     70: *>          N is INTEGER
                     71: *>          The order of the matrix A.  N >= 0.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] NB
                     75: *> \verbatim
                     76: *>          NB is INTEGER
                     77: *>          The maximum number of columns of the matrix A that should be
                     78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     79: *>          blocks.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[out] KB
                     83: *> \verbatim
                     84: *>          KB is INTEGER
                     85: *>          The number of columns of A that were actually factored.
                     86: *>          KB is either NB-1 or NB, or N if N <= NB.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in,out] A
                     90: *> \verbatim
                     91: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     92: *>          On entry, the symmetric matrix A.
                     93: *>            If UPLO = 'U': the leading N-by-N upper triangular part
                     94: *>            of A contains the upper triangular part of the matrix A,
                     95: *>            and the strictly lower triangular part of A is not
                     96: *>            referenced.
                     97: *>
                     98: *>            If UPLO = 'L': the leading N-by-N lower triangular part
                     99: *>            of A contains the lower triangular part of the matrix A,
                    100: *>            and the strictly upper triangular part of A is not
                    101: *>            referenced.
                    102: *>
                    103: *>          On exit, contains:
                    104: *>            a) ONLY diagonal elements of the symmetric block diagonal
                    105: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                    106: *>               (superdiagonal (or subdiagonal) elements of D
                    107: *>                are stored on exit in array E), and
                    108: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
                    109: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] LDA
                    113: *> \verbatim
                    114: *>          LDA is INTEGER
                    115: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[out] E
                    119: *> \verbatim
                    120: *>          E is DOUBLE PRECISION array, dimension (N)
                    121: *>          On exit, contains the superdiagonal (or subdiagonal)
                    122: *>          elements of the symmetric block diagonal matrix D
                    123: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
                    124: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
                    125: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
                    126: *>
                    127: *>          NOTE: For 1-by-1 diagonal block D(k), where
                    128: *>          1 <= k <= N, the element E(k) is set to 0 in both
                    129: *>          UPLO = 'U' or UPLO = 'L' cases.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[out] IPIV
                    133: *> \verbatim
                    134: *>          IPIV is INTEGER array, dimension (N)
                    135: *>          IPIV describes the permutation matrix P in the factorization
                    136: *>          of matrix A as follows. The absolute value of IPIV(k)
                    137: *>          represents the index of row and column that were
                    138: *>          interchanged with the k-th row and column. The value of UPLO
                    139: *>          describes the order in which the interchanges were applied.
                    140: *>          Also, the sign of IPIV represents the block structure of
                    141: *>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
                    142: *>          diagonal blocks which correspond to 1 or 2 interchanges
                    143: *>          at each factorization step.
                    144: *>
                    145: *>          If UPLO = 'U',
                    146: *>          ( in factorization order, k decreases from N to 1 ):
                    147: *>            a) A single positive entry IPIV(k) > 0 means:
                    148: *>               D(k,k) is a 1-by-1 diagonal block.
                    149: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
                    150: *>               interchanged in the submatrix A(1:N,N-KB+1:N);
                    151: *>               If IPIV(k) = k, no interchange occurred.
                    152: *>
                    153: *>
                    154: *>            b) A pair of consecutive negative entries
                    155: *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
                    156: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                    157: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
                    158: *>               1) If -IPIV(k) != k, rows and columns
                    159: *>                  k and -IPIV(k) were interchanged
                    160: *>                  in the matrix A(1:N,N-KB+1:N).
                    161: *>                  If -IPIV(k) = k, no interchange occurred.
                    162: *>               2) If -IPIV(k-1) != k-1, rows and columns
                    163: *>                  k-1 and -IPIV(k-1) were interchanged
                    164: *>                  in the submatrix A(1:N,N-KB+1:N).
                    165: *>                  If -IPIV(k-1) = k-1, no interchange occurred.
                    166: *>
                    167: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.
                    168: *>
                    169: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
                    170: *>
                    171: *>          If UPLO = 'L',
                    172: *>          ( in factorization order, k increases from 1 to N ):
                    173: *>            a) A single positive entry IPIV(k) > 0 means:
                    174: *>               D(k,k) is a 1-by-1 diagonal block.
                    175: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
                    176: *>               interchanged in the submatrix A(1:N,1:KB).
                    177: *>               If IPIV(k) = k, no interchange occurred.
                    178: *>
                    179: *>            b) A pair of consecutive negative entries
                    180: *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
                    181: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    182: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
                    183: *>               1) If -IPIV(k) != k, rows and columns
                    184: *>                  k and -IPIV(k) were interchanged
                    185: *>                  in the submatrix A(1:N,1:KB).
                    186: *>                  If -IPIV(k) = k, no interchange occurred.
                    187: *>               2) If -IPIV(k+1) != k+1, rows and columns
                    188: *>                  k-1 and -IPIV(k-1) were interchanged
                    189: *>                  in the submatrix A(1:N,1:KB).
                    190: *>                  If -IPIV(k+1) = k+1, no interchange occurred.
                    191: *>
                    192: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.
                    193: *>
                    194: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[out] W
                    198: *> \verbatim
                    199: *>          W is DOUBLE PRECISION array, dimension (LDW,NB)
                    200: *> \endverbatim
                    201: *>
                    202: *> \param[in] LDW
                    203: *> \verbatim
                    204: *>          LDW is INTEGER
                    205: *>          The leading dimension of the array W.  LDW >= max(1,N).
                    206: *> \endverbatim
                    207: *>
                    208: *> \param[out] INFO
                    209: *> \verbatim
                    210: *>          INFO is INTEGER
                    211: *>          = 0: successful exit
                    212: *>
                    213: *>          < 0: If INFO = -k, the k-th argument had an illegal value
                    214: *>
                    215: *>          > 0: If INFO = k, the matrix A is singular, because:
                    216: *>                 If UPLO = 'U': column k in the upper
                    217: *>                 triangular part of A contains all zeros.
                    218: *>                 If UPLO = 'L': column k in the lower
                    219: *>                 triangular part of A contains all zeros.
                    220: *>
                    221: *>               Therefore D(k,k) is exactly zero, and superdiagonal
                    222: *>               elements of column k of U (or subdiagonal elements of
                    223: *>               column k of L ) are all zeros. The factorization has
                    224: *>               been completed, but the block diagonal matrix D is
                    225: *>               exactly singular, and division by zero will occur if
                    226: *>               it is used to solve a system of equations.
                    227: *>
                    228: *>               NOTE: INFO only stores the first occurrence of
                    229: *>               a singularity, any subsequent occurrence of singularity
                    230: *>               is not stored in INFO even though the factorization
                    231: *>               always completes.
                    232: *> \endverbatim
                    233: *
                    234: *  Authors:
                    235: *  ========
                    236: *
                    237: *> \author Univ. of Tennessee
                    238: *> \author Univ. of California Berkeley
                    239: *> \author Univ. of Colorado Denver
                    240: *> \author NAG Ltd.
                    241: *
                    242: *> \ingroup doubleSYcomputational
                    243: *
                    244: *> \par Contributors:
                    245: *  ==================
                    246: *>
                    247: *> \verbatim
                    248: *>
                    249: *>  December 2016,  Igor Kozachenko,
                    250: *>                  Computer Science Division,
                    251: *>                  University of California, Berkeley
                    252: *>
                    253: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                    254: *>                  School of Mathematics,
                    255: *>                  University of Manchester
                    256: *>
                    257: *> \endverbatim
                    258: *
                    259: *  =====================================================================
                    260:       SUBROUTINE DLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
                    261:      $                      INFO )
                    262: *
1.5     ! bertrand  263: *  -- LAPACK computational routine --
1.1       bertrand  264: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    265: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    266: *
                    267: *     .. Scalar Arguments ..
                    268:       CHARACTER          UPLO
                    269:       INTEGER            INFO, KB, LDA, LDW, N, NB
                    270: *     ..
                    271: *     .. Array Arguments ..
                    272:       INTEGER            IPIV( * )
                    273:       DOUBLE PRECISION   A( LDA, * ), E( * ), W( LDW, * )
                    274: *     ..
                    275: *
                    276: *  =====================================================================
                    277: *
                    278: *     .. Parameters ..
                    279:       DOUBLE PRECISION   ZERO, ONE
                    280:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    281:       DOUBLE PRECISION   EIGHT, SEVTEN
                    282:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
                    283: *     ..
                    284: *     .. Local Scalars ..
                    285:       LOGICAL            DONE
                    286:       INTEGER            IMAX, ITEMP, J, JB, JJ, JMAX, K, KK, KW, KKW,
                    287:      $                   KP, KSTEP, P, II
                    288:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22,
                    289:      $                   DTEMP, R1, ROWMAX, T, SFMIN
                    290: *     ..
                    291: *     .. External Functions ..
                    292:       LOGICAL            LSAME
                    293:       INTEGER            IDAMAX
                    294:       DOUBLE PRECISION   DLAMCH
                    295:       EXTERNAL           LSAME, IDAMAX, DLAMCH
                    296: *     ..
                    297: *     .. External Subroutines ..
                    298:       EXTERNAL           DCOPY, DGEMM, DGEMV, DSCAL, DSWAP
                    299: *     ..
                    300: *     .. Intrinsic Functions ..
                    301:       INTRINSIC          ABS, MAX, MIN, SQRT
                    302: *     ..
                    303: *     .. Executable Statements ..
                    304: *
                    305:       INFO = 0
                    306: *
                    307: *     Initialize ALPHA for use in choosing pivot block size.
                    308: *
                    309:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
                    310: *
                    311: *     Compute machine safe minimum
                    312: *
                    313:       SFMIN = DLAMCH( 'S' )
                    314: *
                    315:       IF( LSAME( UPLO, 'U' ) ) THEN
                    316: *
                    317: *        Factorize the trailing columns of A using the upper triangle
                    318: *        of A and working backwards, and compute the matrix W = U12*D
                    319: *        for use in updating A11
                    320: *
1.4       bertrand  321: *        Initialize the first entry of array E, where superdiagonal
1.1       bertrand  322: *        elements of D are stored
                    323: *
                    324:          E( 1 ) = ZERO
                    325: *
                    326: *        K is the main loop index, decreasing from N in steps of 1 or 2
                    327: *
                    328:          K = N
                    329:    10    CONTINUE
                    330: *
                    331: *        KW is the column of W which corresponds to column K of A
                    332: *
                    333:          KW = NB + K - N
                    334: *
                    335: *        Exit from loop
                    336: *
                    337:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
                    338:      $      GO TO 30
                    339: *
                    340:          KSTEP = 1
                    341:          P = K
                    342: *
                    343: *        Copy column K of A to column KW of W and update it
                    344: *
                    345:          CALL DCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
                    346:          IF( K.LT.N )
                    347:      $      CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ),
                    348:      $                  LDA, W( K, KW+1 ), LDW, ONE, W( 1, KW ), 1 )
                    349: *
                    350: *        Determine rows and columns to be interchanged and whether
                    351: *        a 1-by-1 or 2-by-2 pivot block will be used
                    352: *
                    353:          ABSAKK = ABS( W( K, KW ) )
                    354: *
                    355: *        IMAX is the row-index of the largest off-diagonal element in
                    356: *        column K, and COLMAX is its absolute value.
                    357: *        Determine both COLMAX and IMAX.
                    358: *
                    359:          IF( K.GT.1 ) THEN
                    360:             IMAX = IDAMAX( K-1, W( 1, KW ), 1 )
                    361:             COLMAX = ABS( W( IMAX, KW ) )
                    362:          ELSE
                    363:             COLMAX = ZERO
                    364:          END IF
                    365: *
                    366:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    367: *
                    368: *           Column K is zero or underflow: set INFO and continue
                    369: *
                    370:             IF( INFO.EQ.0 )
                    371:      $         INFO = K
                    372:             KP = K
                    373:             CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
                    374: *
                    375: *           Set E( K ) to zero
                    376: *
                    377:             IF( K.GT.1 )
                    378:      $         E( K ) = ZERO
                    379: *
                    380:          ELSE
                    381: *
                    382: *           ============================================================
                    383: *
                    384: *           Test for interchange
                    385: *
                    386: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
                    387: *           (used to handle NaN and Inf)
                    388: *
                    389:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
                    390: *
                    391: *              no interchange, use 1-by-1 pivot block
                    392: *
                    393:                KP = K
                    394: *
                    395:             ELSE
                    396: *
                    397:                DONE = .FALSE.
                    398: *
                    399: *              Loop until pivot found
                    400: *
                    401:    12          CONTINUE
                    402: *
                    403: *                 Begin pivot search loop body
                    404: *
                    405: *
                    406: *                 Copy column IMAX to column KW-1 of W and update it
                    407: *
                    408:                   CALL DCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
                    409:                   CALL DCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
                    410:      $                        W( IMAX+1, KW-1 ), 1 )
                    411: *
                    412:                   IF( K.LT.N )
                    413:      $               CALL DGEMV( 'No transpose', K, N-K, -ONE,
                    414:      $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
                    415:      $                           ONE, W( 1, KW-1 ), 1 )
                    416: *
                    417: *                 JMAX is the column-index of the largest off-diagonal
                    418: *                 element in row IMAX, and ROWMAX is its absolute value.
                    419: *                 Determine both ROWMAX and JMAX.
                    420: *
                    421:                   IF( IMAX.NE.K ) THEN
                    422:                      JMAX = IMAX + IDAMAX( K-IMAX, W( IMAX+1, KW-1 ),
                    423:      $                                     1 )
                    424:                      ROWMAX = ABS( W( JMAX, KW-1 ) )
                    425:                   ELSE
                    426:                      ROWMAX = ZERO
                    427:                   END IF
                    428: *
                    429:                   IF( IMAX.GT.1 ) THEN
                    430:                      ITEMP = IDAMAX( IMAX-1, W( 1, KW-1 ), 1 )
                    431:                      DTEMP = ABS( W( ITEMP, KW-1 ) )
                    432:                      IF( DTEMP.GT.ROWMAX ) THEN
                    433:                         ROWMAX = DTEMP
                    434:                         JMAX = ITEMP
                    435:                      END IF
                    436:                   END IF
                    437: *
                    438: *                 Equivalent to testing for
                    439: *                 ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
                    440: *                 (used to handle NaN and Inf)
                    441: *
                    442:                   IF( .NOT.(ABS( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
                    443:      $            THEN
                    444: *
                    445: *                    interchange rows and columns K and IMAX,
                    446: *                    use 1-by-1 pivot block
                    447: *
                    448:                      KP = IMAX
                    449: *
                    450: *                    copy column KW-1 of W to column KW of W
                    451: *
                    452:                      CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
                    453: *
                    454:                      DONE = .TRUE.
                    455: *
                    456: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
                    457: *                 (used to handle NaN and Inf)
                    458: *
                    459:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
                    460:      $            THEN
                    461: *
                    462: *                    interchange rows and columns K-1 and IMAX,
                    463: *                    use 2-by-2 pivot block
                    464: *
                    465:                      KP = IMAX
                    466:                      KSTEP = 2
                    467:                      DONE = .TRUE.
                    468:                   ELSE
                    469: *
                    470: *                    Pivot not found: set params and repeat
                    471: *
                    472:                      P = IMAX
                    473:                      COLMAX = ROWMAX
                    474:                      IMAX = JMAX
                    475: *
                    476: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
                    477: *
                    478:                      CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
                    479: *
                    480:                   END IF
                    481: *
                    482: *                 End pivot search loop body
                    483: *
                    484:                IF( .NOT. DONE ) GOTO 12
                    485: *
                    486:             END IF
                    487: *
                    488: *           ============================================================
                    489: *
                    490:             KK = K - KSTEP + 1
                    491: *
                    492: *           KKW is the column of W which corresponds to column KK of A
                    493: *
                    494:             KKW = NB + KK - N
                    495: *
                    496:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
                    497: *
                    498: *              Copy non-updated column K to column P
                    499: *
                    500:                CALL DCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
                    501:                CALL DCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
                    502: *
                    503: *              Interchange rows K and P in last N-K+1 columns of A
                    504: *              and last N-K+2 columns of W
                    505: *
                    506:                CALL DSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
                    507:                CALL DSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
                    508:             END IF
                    509: *
                    510: *           Updated column KP is already stored in column KKW of W
                    511: *
                    512:             IF( KP.NE.KK ) THEN
                    513: *
                    514: *              Copy non-updated column KK to column KP
                    515: *
                    516:                A( KP, K ) = A( KK, K )
                    517:                CALL DCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
                    518:      $                     LDA )
                    519:                CALL DCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
                    520: *
                    521: *              Interchange rows KK and KP in last N-KK+1 columns
                    522: *              of A and W
                    523: *
                    524:                CALL DSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
                    525:                CALL DSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
                    526:      $                     LDW )
                    527:             END IF
                    528: *
                    529:             IF( KSTEP.EQ.1 ) THEN
                    530: *
                    531: *              1-by-1 pivot block D(k): column KW of W now holds
                    532: *
                    533: *              W(k) = U(k)*D(k)
                    534: *
                    535: *              where U(k) is the k-th column of U
                    536: *
                    537: *              Store U(k) in column k of A
                    538: *
                    539:                CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
                    540:                IF( K.GT.1 ) THEN
                    541:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
                    542:                      R1 = ONE / A( K, K )
                    543:                      CALL DSCAL( K-1, R1, A( 1, K ), 1 )
                    544:                   ELSE IF( A( K, K ).NE.ZERO ) THEN
                    545:                      DO 14 II = 1, K - 1
                    546:                         A( II, K ) = A( II, K ) / A( K, K )
                    547:    14                CONTINUE
                    548:                   END IF
                    549: *
                    550: *                 Store the superdiagonal element of D in array E
                    551: *
                    552:                   E( K ) = ZERO
                    553: *
                    554:                END IF
                    555: *
                    556:             ELSE
                    557: *
                    558: *              2-by-2 pivot block D(k): columns KW and KW-1 of W now
                    559: *              hold
                    560: *
                    561: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
                    562: *
                    563: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
                    564: *              of U
                    565: *
                    566:                IF( K.GT.2 ) THEN
                    567: *
                    568: *                 Store U(k) and U(k-1) in columns k and k-1 of A
                    569: *
                    570:                   D12 = W( K-1, KW )
                    571:                   D11 = W( K, KW ) / D12
                    572:                   D22 = W( K-1, KW-1 ) / D12
                    573:                   T = ONE / ( D11*D22-ONE )
                    574:                   DO 20 J = 1, K - 2
                    575:                      A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
                    576:      $                             D12 )
                    577:                      A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
                    578:      $                           D12 )
                    579:    20             CONTINUE
                    580:                END IF
                    581: *
                    582: *              Copy diagonal elements of D(K) to A,
                    583: *              copy superdiagonal element of D(K) to E(K) and
                    584: *              ZERO out superdiagonal entry of A
                    585: *
                    586:                A( K-1, K-1 ) = W( K-1, KW-1 )
                    587:                A( K-1, K ) = ZERO
                    588:                A( K, K ) = W( K, KW )
                    589:                E( K ) = W( K-1, KW )
                    590:                E( K-1 ) = ZERO
                    591: *
                    592:             END IF
                    593: *
                    594: *           End column K is nonsingular
                    595: *
                    596:          END IF
                    597: *
                    598: *        Store details of the interchanges in IPIV
                    599: *
                    600:          IF( KSTEP.EQ.1 ) THEN
                    601:             IPIV( K ) = KP
                    602:          ELSE
                    603:             IPIV( K ) = -P
                    604:             IPIV( K-1 ) = -KP
                    605:          END IF
                    606: *
                    607: *        Decrease K and return to the start of the main loop
                    608: *
                    609:          K = K - KSTEP
                    610:          GO TO 10
                    611: *
                    612:    30    CONTINUE
                    613: *
                    614: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
                    615: *
                    616: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
                    617: *
                    618: *        computing blocks of NB columns at a time
                    619: *
                    620:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
                    621:             JB = MIN( NB, K-J+1 )
                    622: *
                    623: *           Update the upper triangle of the diagonal block
                    624: *
                    625:             DO 40 JJ = J, J + JB - 1
                    626:                CALL DGEMV( 'No transpose', JJ-J+1, N-K, -ONE,
                    627:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, ONE,
                    628:      $                     A( J, JJ ), 1 )
                    629:    40       CONTINUE
                    630: *
                    631: *           Update the rectangular superdiagonal block
                    632: *
                    633:             IF( J.GE.2 )
                    634:      $         CALL DGEMM( 'No transpose', 'Transpose', J-1, JB,
                    635:      $                  N-K, -ONE, A( 1, K+1 ), LDA, W( J, KW+1 ),
                    636:      $                  LDW, ONE, A( 1, J ), LDA )
                    637:    50    CONTINUE
                    638: *
                    639: *        Set KB to the number of columns factorized
                    640: *
                    641:          KB = N - K
                    642: *
                    643:       ELSE
                    644: *
                    645: *        Factorize the leading columns of A using the lower triangle
                    646: *        of A and working forwards, and compute the matrix W = L21*D
                    647: *        for use in updating A22
                    648: *
1.4       bertrand  649: *        Initialize the unused last entry of the subdiagonal array E.
1.1       bertrand  650: *
                    651:          E( N ) = ZERO
                    652: *
                    653: *        K is the main loop index, increasing from 1 in steps of 1 or 2
                    654: *
                    655:          K = 1
                    656:    70   CONTINUE
                    657: *
                    658: *        Exit from loop
                    659: *
                    660:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
                    661:      $      GO TO 90
                    662: *
                    663:          KSTEP = 1
                    664:          P = K
                    665: *
                    666: *        Copy column K of A to column K of W and update it
                    667: *
                    668:          CALL DCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
                    669:          IF( K.GT.1 )
                    670:      $      CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ),
                    671:      $                  LDA, W( K, 1 ), LDW, ONE, W( K, K ), 1 )
                    672: *
                    673: *        Determine rows and columns to be interchanged and whether
                    674: *        a 1-by-1 or 2-by-2 pivot block will be used
                    675: *
                    676:          ABSAKK = ABS( W( K, K ) )
                    677: *
                    678: *        IMAX is the row-index of the largest off-diagonal element in
                    679: *        column K, and COLMAX is its absolute value.
                    680: *        Determine both COLMAX and IMAX.
                    681: *
                    682:          IF( K.LT.N ) THEN
                    683:             IMAX = K + IDAMAX( N-K, W( K+1, K ), 1 )
                    684:             COLMAX = ABS( W( IMAX, K ) )
                    685:          ELSE
                    686:             COLMAX = ZERO
                    687:          END IF
                    688: *
                    689:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    690: *
                    691: *           Column K is zero or underflow: set INFO and continue
                    692: *
                    693:             IF( INFO.EQ.0 )
                    694:      $         INFO = K
                    695:             KP = K
                    696:             CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
                    697: *
                    698: *           Set E( K ) to zero
                    699: *
                    700:             IF( K.LT.N )
                    701:      $         E( K ) = ZERO
                    702: *
                    703:          ELSE
                    704: *
                    705: *           ============================================================
                    706: *
                    707: *           Test for interchange
                    708: *
                    709: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
                    710: *           (used to handle NaN and Inf)
                    711: *
                    712:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
                    713: *
                    714: *              no interchange, use 1-by-1 pivot block
                    715: *
                    716:                KP = K
                    717: *
                    718:             ELSE
                    719: *
                    720:                DONE = .FALSE.
                    721: *
                    722: *              Loop until pivot found
                    723: *
                    724:    72          CONTINUE
                    725: *
                    726: *                 Begin pivot search loop body
                    727: *
                    728: *
                    729: *                 Copy column IMAX to column K+1 of W and update it
                    730: *
                    731:                   CALL DCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
                    732:                   CALL DCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
                    733:      $                        W( IMAX, K+1 ), 1 )
                    734:                   IF( K.GT.1 )
                    735:      $               CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE,
                    736:      $                           A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
                    737:      $                           ONE, W( K, K+1 ), 1 )
                    738: *
                    739: *                 JMAX is the column-index of the largest off-diagonal
                    740: *                 element in row IMAX, and ROWMAX is its absolute value.
                    741: *                 Determine both ROWMAX and JMAX.
                    742: *
                    743:                   IF( IMAX.NE.K ) THEN
                    744:                      JMAX = K - 1 + IDAMAX( IMAX-K, W( K, K+1 ), 1 )
                    745:                      ROWMAX = ABS( W( JMAX, K+1 ) )
                    746:                   ELSE
                    747:                      ROWMAX = ZERO
                    748:                   END IF
                    749: *
                    750:                   IF( IMAX.LT.N ) THEN
                    751:                      ITEMP = IMAX + IDAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
                    752:                      DTEMP = ABS( W( ITEMP, K+1 ) )
                    753:                      IF( DTEMP.GT.ROWMAX ) THEN
                    754:                         ROWMAX = DTEMP
                    755:                         JMAX = ITEMP
                    756:                      END IF
                    757:                   END IF
                    758: *
                    759: *                 Equivalent to testing for
                    760: *                 ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
                    761: *                 (used to handle NaN and Inf)
                    762: *
                    763:                   IF( .NOT.( ABS( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
                    764:      $            THEN
                    765: *
                    766: *                    interchange rows and columns K and IMAX,
                    767: *                    use 1-by-1 pivot block
                    768: *
                    769:                      KP = IMAX
                    770: *
                    771: *                    copy column K+1 of W to column K of W
                    772: *
                    773:                      CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
                    774: *
                    775:                      DONE = .TRUE.
                    776: *
                    777: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
                    778: *                 (used to handle NaN and Inf)
                    779: *
                    780:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
                    781:      $            THEN
                    782: *
                    783: *                    interchange rows and columns K+1 and IMAX,
                    784: *                    use 2-by-2 pivot block
                    785: *
                    786:                      KP = IMAX
                    787:                      KSTEP = 2
                    788:                      DONE = .TRUE.
                    789:                   ELSE
                    790: *
                    791: *                    Pivot not found: set params and repeat
                    792: *
                    793:                      P = IMAX
                    794:                      COLMAX = ROWMAX
                    795:                      IMAX = JMAX
                    796: *
                    797: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
                    798: *
                    799:                      CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
                    800: *
                    801:                   END IF
                    802: *
                    803: *                 End pivot search loop body
                    804: *
                    805:                IF( .NOT. DONE ) GOTO 72
                    806: *
                    807:             END IF
                    808: *
                    809: *           ============================================================
                    810: *
                    811:             KK = K + KSTEP - 1
                    812: *
                    813:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
                    814: *
                    815: *              Copy non-updated column K to column P
                    816: *
                    817:                CALL DCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
                    818:                CALL DCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
                    819: *
                    820: *              Interchange rows K and P in first K columns of A
                    821: *              and first K+1 columns of W
                    822: *
                    823:                CALL DSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
                    824:                CALL DSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
                    825:             END IF
                    826: *
                    827: *           Updated column KP is already stored in column KK of W
                    828: *
                    829:             IF( KP.NE.KK ) THEN
                    830: *
                    831: *              Copy non-updated column KK to column KP
                    832: *
                    833:                A( KP, K ) = A( KK, K )
                    834:                CALL DCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
                    835:                CALL DCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
                    836: *
                    837: *              Interchange rows KK and KP in first KK columns of A and W
                    838: *
                    839:                CALL DSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
                    840:                CALL DSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
                    841:             END IF
                    842: *
                    843:             IF( KSTEP.EQ.1 ) THEN
                    844: *
                    845: *              1-by-1 pivot block D(k): column k of W now holds
                    846: *
                    847: *              W(k) = L(k)*D(k)
                    848: *
                    849: *              where L(k) is the k-th column of L
                    850: *
                    851: *              Store L(k) in column k of A
                    852: *
                    853:                CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
                    854:                IF( K.LT.N ) THEN
                    855:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
                    856:                      R1 = ONE / A( K, K )
                    857:                      CALL DSCAL( N-K, R1, A( K+1, K ), 1 )
                    858:                   ELSE IF( A( K, K ).NE.ZERO ) THEN
                    859:                      DO 74 II = K + 1, N
                    860:                         A( II, K ) = A( II, K ) / A( K, K )
                    861:    74                CONTINUE
                    862:                   END IF
                    863: *
                    864: *                 Store the subdiagonal element of D in array E
                    865: *
                    866:                   E( K ) = ZERO
                    867: *
                    868:                END IF
                    869: *
                    870:             ELSE
                    871: *
                    872: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
                    873: *
                    874: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
                    875: *
                    876: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
                    877: *              of L
                    878: *
                    879:                IF( K.LT.N-1 ) THEN
                    880: *
                    881: *                 Store L(k) and L(k+1) in columns k and k+1 of A
                    882: *
                    883:                   D21 = W( K+1, K )
                    884:                   D11 = W( K+1, K+1 ) / D21
                    885:                   D22 = W( K, K ) / D21
                    886:                   T = ONE / ( D11*D22-ONE )
                    887:                   DO 80 J = K + 2, N
                    888:                      A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
                    889:      $                           D21 )
                    890:                      A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
                    891:      $                             D21 )
                    892:    80             CONTINUE
                    893:                END IF
                    894: *
                    895: *              Copy diagonal elements of D(K) to A,
                    896: *              copy subdiagonal element of D(K) to E(K) and
                    897: *              ZERO out subdiagonal entry of A
                    898: *
                    899:                A( K, K ) = W( K, K )
                    900:                A( K+1, K ) = ZERO
                    901:                A( K+1, K+1 ) = W( K+1, K+1 )
                    902:                E( K ) = W( K+1, K )
                    903:                E( K+1 ) = ZERO
                    904: *
                    905:             END IF
                    906: *
                    907: *           End column K is nonsingular
                    908: *
                    909:          END IF
                    910: *
                    911: *        Store details of the interchanges in IPIV
                    912: *
                    913:          IF( KSTEP.EQ.1 ) THEN
                    914:             IPIV( K ) = KP
                    915:          ELSE
                    916:             IPIV( K ) = -P
                    917:             IPIV( K+1 ) = -KP
                    918:          END IF
                    919: *
                    920: *        Increase K and return to the start of the main loop
                    921: *
                    922:          K = K + KSTEP
                    923:          GO TO 70
                    924: *
                    925:    90    CONTINUE
                    926: *
                    927: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
                    928: *
                    929: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
                    930: *
                    931: *        computing blocks of NB columns at a time
                    932: *
                    933:          DO 110 J = K, N, NB
                    934:             JB = MIN( NB, N-J+1 )
                    935: *
                    936: *           Update the lower triangle of the diagonal block
                    937: *
                    938:             DO 100 JJ = J, J + JB - 1
                    939:                CALL DGEMV( 'No transpose', J+JB-JJ, K-1, -ONE,
                    940:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, ONE,
                    941:      $                     A( JJ, JJ ), 1 )
                    942:   100       CONTINUE
                    943: *
                    944: *           Update the rectangular subdiagonal block
                    945: *
                    946:             IF( J+JB.LE.N )
                    947:      $         CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
                    948:      $                     K-1, -ONE, A( J+JB, 1 ), LDA, W( J, 1 ),
                    949:      $                     LDW, ONE, A( J+JB, J ), LDA )
                    950:   110    CONTINUE
                    951: *
                    952: *        Set KB to the number of columns factorized
                    953: *
                    954:          KB = K - 1
                    955: *
                    956:       END IF
                    957: *
                    958:       RETURN
                    959: *
                    960: *     End of DLASYF_RK
                    961: *
                    962:       END

CVSweb interface <joel.bertrand@systella.fr>