Annotation of rpl/lapack/lapack/dlasyf_rk.f, revision 1.3

1.1       bertrand    1: *> \brief \b DLASYF_RK computes a partial factorization of a real symmetric indefinite matrix using bounded Bunch-Kaufman (rook) diagonal pivoting method.
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLASYF_RK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf_rk.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf_rk.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf_rk.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
                     22: *                             INFO )
                     23: *
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, KB, LDA, LDW, N, NB
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), E( * ), W( LDW, * )
                     31: *       ..
                     32: *
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *> DLASYF_RK computes a partial factorization of a real symmetric
                     39: *> matrix A using the bounded Bunch-Kaufman (rook) diagonal
                     40: *> pivoting method. The partial factorization has the form:
                     41: *>
                     42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                     43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
                     44: *>
                     45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L',
                     46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
                     47: *>
                     48: *> where the order of D is at most NB. The actual order is returned in
                     49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
                     50: *>
                     51: *> DLASYF_RK is an auxiliary routine called by DSYTRF_RK. It uses
                     52: *> blocked code (calling Level 3 BLAS) to update the submatrix
                     53: *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
                     54: *> \endverbatim
                     55: *
                     56: *  Arguments:
                     57: *  ==========
                     58: *
                     59: *> \param[in] UPLO
                     60: *> \verbatim
                     61: *>          UPLO is CHARACTER*1
                     62: *>          Specifies whether the upper or lower triangular part of the
                     63: *>          symmetric matrix A is stored:
                     64: *>          = 'U':  Upper triangular
                     65: *>          = 'L':  Lower triangular
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] N
                     69: *> \verbatim
                     70: *>          N is INTEGER
                     71: *>          The order of the matrix A.  N >= 0.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] NB
                     75: *> \verbatim
                     76: *>          NB is INTEGER
                     77: *>          The maximum number of columns of the matrix A that should be
                     78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     79: *>          blocks.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[out] KB
                     83: *> \verbatim
                     84: *>          KB is INTEGER
                     85: *>          The number of columns of A that were actually factored.
                     86: *>          KB is either NB-1 or NB, or N if N <= NB.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in,out] A
                     90: *> \verbatim
                     91: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     92: *>          On entry, the symmetric matrix A.
                     93: *>            If UPLO = 'U': the leading N-by-N upper triangular part
                     94: *>            of A contains the upper triangular part of the matrix A,
                     95: *>            and the strictly lower triangular part of A is not
                     96: *>            referenced.
                     97: *>
                     98: *>            If UPLO = 'L': the leading N-by-N lower triangular part
                     99: *>            of A contains the lower triangular part of the matrix A,
                    100: *>            and the strictly upper triangular part of A is not
                    101: *>            referenced.
                    102: *>
                    103: *>          On exit, contains:
                    104: *>            a) ONLY diagonal elements of the symmetric block diagonal
                    105: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                    106: *>               (superdiagonal (or subdiagonal) elements of D
                    107: *>                are stored on exit in array E), and
                    108: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
                    109: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] LDA
                    113: *> \verbatim
                    114: *>          LDA is INTEGER
                    115: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[out] E
                    119: *> \verbatim
                    120: *>          E is DOUBLE PRECISION array, dimension (N)
                    121: *>          On exit, contains the superdiagonal (or subdiagonal)
                    122: *>          elements of the symmetric block diagonal matrix D
                    123: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
                    124: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
                    125: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
                    126: *>
                    127: *>          NOTE: For 1-by-1 diagonal block D(k), where
                    128: *>          1 <= k <= N, the element E(k) is set to 0 in both
                    129: *>          UPLO = 'U' or UPLO = 'L' cases.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[out] IPIV
                    133: *> \verbatim
                    134: *>          IPIV is INTEGER array, dimension (N)
                    135: *>          IPIV describes the permutation matrix P in the factorization
                    136: *>          of matrix A as follows. The absolute value of IPIV(k)
                    137: *>          represents the index of row and column that were
                    138: *>          interchanged with the k-th row and column. The value of UPLO
                    139: *>          describes the order in which the interchanges were applied.
                    140: *>          Also, the sign of IPIV represents the block structure of
                    141: *>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
                    142: *>          diagonal blocks which correspond to 1 or 2 interchanges
                    143: *>          at each factorization step.
                    144: *>
                    145: *>          If UPLO = 'U',
                    146: *>          ( in factorization order, k decreases from N to 1 ):
                    147: *>            a) A single positive entry IPIV(k) > 0 means:
                    148: *>               D(k,k) is a 1-by-1 diagonal block.
                    149: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
                    150: *>               interchanged in the submatrix A(1:N,N-KB+1:N);
                    151: *>               If IPIV(k) = k, no interchange occurred.
                    152: *>
                    153: *>
                    154: *>            b) A pair of consecutive negative entries
                    155: *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
                    156: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                    157: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
                    158: *>               1) If -IPIV(k) != k, rows and columns
                    159: *>                  k and -IPIV(k) were interchanged
                    160: *>                  in the matrix A(1:N,N-KB+1:N).
                    161: *>                  If -IPIV(k) = k, no interchange occurred.
                    162: *>               2) If -IPIV(k-1) != k-1, rows and columns
                    163: *>                  k-1 and -IPIV(k-1) were interchanged
                    164: *>                  in the submatrix A(1:N,N-KB+1:N).
                    165: *>                  If -IPIV(k-1) = k-1, no interchange occurred.
                    166: *>
                    167: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.
                    168: *>
                    169: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
                    170: *>
                    171: *>          If UPLO = 'L',
                    172: *>          ( in factorization order, k increases from 1 to N ):
                    173: *>            a) A single positive entry IPIV(k) > 0 means:
                    174: *>               D(k,k) is a 1-by-1 diagonal block.
                    175: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
                    176: *>               interchanged in the submatrix A(1:N,1:KB).
                    177: *>               If IPIV(k) = k, no interchange occurred.
                    178: *>
                    179: *>            b) A pair of consecutive negative entries
                    180: *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
                    181: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    182: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
                    183: *>               1) If -IPIV(k) != k, rows and columns
                    184: *>                  k and -IPIV(k) were interchanged
                    185: *>                  in the submatrix A(1:N,1:KB).
                    186: *>                  If -IPIV(k) = k, no interchange occurred.
                    187: *>               2) If -IPIV(k+1) != k+1, rows and columns
                    188: *>                  k-1 and -IPIV(k-1) were interchanged
                    189: *>                  in the submatrix A(1:N,1:KB).
                    190: *>                  If -IPIV(k+1) = k+1, no interchange occurred.
                    191: *>
                    192: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.
                    193: *>
                    194: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[out] W
                    198: *> \verbatim
                    199: *>          W is DOUBLE PRECISION array, dimension (LDW,NB)
                    200: *> \endverbatim
                    201: *>
                    202: *> \param[in] LDW
                    203: *> \verbatim
                    204: *>          LDW is INTEGER
                    205: *>          The leading dimension of the array W.  LDW >= max(1,N).
                    206: *> \endverbatim
                    207: *>
                    208: *> \param[out] INFO
                    209: *> \verbatim
                    210: *>          INFO is INTEGER
                    211: *>          = 0: successful exit
                    212: *>
                    213: *>          < 0: If INFO = -k, the k-th argument had an illegal value
                    214: *>
                    215: *>          > 0: If INFO = k, the matrix A is singular, because:
                    216: *>                 If UPLO = 'U': column k in the upper
                    217: *>                 triangular part of A contains all zeros.
                    218: *>                 If UPLO = 'L': column k in the lower
                    219: *>                 triangular part of A contains all zeros.
                    220: *>
                    221: *>               Therefore D(k,k) is exactly zero, and superdiagonal
                    222: *>               elements of column k of U (or subdiagonal elements of
                    223: *>               column k of L ) are all zeros. The factorization has
                    224: *>               been completed, but the block diagonal matrix D is
                    225: *>               exactly singular, and division by zero will occur if
                    226: *>               it is used to solve a system of equations.
                    227: *>
                    228: *>               NOTE: INFO only stores the first occurrence of
                    229: *>               a singularity, any subsequent occurrence of singularity
                    230: *>               is not stored in INFO even though the factorization
                    231: *>               always completes.
                    232: *> \endverbatim
                    233: *
                    234: *  Authors:
                    235: *  ========
                    236: *
                    237: *> \author Univ. of Tennessee
                    238: *> \author Univ. of California Berkeley
                    239: *> \author Univ. of Colorado Denver
                    240: *> \author NAG Ltd.
                    241: *
                    242: *> \date December 2016
                    243: *
                    244: *> \ingroup doubleSYcomputational
                    245: *
                    246: *> \par Contributors:
                    247: *  ==================
                    248: *>
                    249: *> \verbatim
                    250: *>
                    251: *>  December 2016,  Igor Kozachenko,
                    252: *>                  Computer Science Division,
                    253: *>                  University of California, Berkeley
                    254: *>
                    255: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                    256: *>                  School of Mathematics,
                    257: *>                  University of Manchester
                    258: *>
                    259: *> \endverbatim
                    260: *
                    261: *  =====================================================================
                    262:       SUBROUTINE DLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
                    263:      $                      INFO )
                    264: *
                    265: *  -- LAPACK computational routine (version 3.7.0) --
                    266: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    267: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    268: *     December 2016
                    269: *
                    270: *     .. Scalar Arguments ..
                    271:       CHARACTER          UPLO
                    272:       INTEGER            INFO, KB, LDA, LDW, N, NB
                    273: *     ..
                    274: *     .. Array Arguments ..
                    275:       INTEGER            IPIV( * )
                    276:       DOUBLE PRECISION   A( LDA, * ), E( * ), W( LDW, * )
                    277: *     ..
                    278: *
                    279: *  =====================================================================
                    280: *
                    281: *     .. Parameters ..
                    282:       DOUBLE PRECISION   ZERO, ONE
                    283:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    284:       DOUBLE PRECISION   EIGHT, SEVTEN
                    285:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
                    286: *     ..
                    287: *     .. Local Scalars ..
                    288:       LOGICAL            DONE
                    289:       INTEGER            IMAX, ITEMP, J, JB, JJ, JMAX, K, KK, KW, KKW,
                    290:      $                   KP, KSTEP, P, II
                    291:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22,
                    292:      $                   DTEMP, R1, ROWMAX, T, SFMIN
                    293: *     ..
                    294: *     .. External Functions ..
                    295:       LOGICAL            LSAME
                    296:       INTEGER            IDAMAX
                    297:       DOUBLE PRECISION   DLAMCH
                    298:       EXTERNAL           LSAME, IDAMAX, DLAMCH
                    299: *     ..
                    300: *     .. External Subroutines ..
                    301:       EXTERNAL           DCOPY, DGEMM, DGEMV, DSCAL, DSWAP
                    302: *     ..
                    303: *     .. Intrinsic Functions ..
                    304:       INTRINSIC          ABS, MAX, MIN, SQRT
                    305: *     ..
                    306: *     .. Executable Statements ..
                    307: *
                    308:       INFO = 0
                    309: *
                    310: *     Initialize ALPHA for use in choosing pivot block size.
                    311: *
                    312:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
                    313: *
                    314: *     Compute machine safe minimum
                    315: *
                    316:       SFMIN = DLAMCH( 'S' )
                    317: *
                    318:       IF( LSAME( UPLO, 'U' ) ) THEN
                    319: *
                    320: *        Factorize the trailing columns of A using the upper triangle
                    321: *        of A and working backwards, and compute the matrix W = U12*D
                    322: *        for use in updating A11
                    323: *
                    324: *        Initilize the first entry of array E, where superdiagonal
                    325: *        elements of D are stored
                    326: *
                    327:          E( 1 ) = ZERO
                    328: *
                    329: *        K is the main loop index, decreasing from N in steps of 1 or 2
                    330: *
                    331:          K = N
                    332:    10    CONTINUE
                    333: *
                    334: *        KW is the column of W which corresponds to column K of A
                    335: *
                    336:          KW = NB + K - N
                    337: *
                    338: *        Exit from loop
                    339: *
                    340:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
                    341:      $      GO TO 30
                    342: *
                    343:          KSTEP = 1
                    344:          P = K
                    345: *
                    346: *        Copy column K of A to column KW of W and update it
                    347: *
                    348:          CALL DCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
                    349:          IF( K.LT.N )
                    350:      $      CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ),
                    351:      $                  LDA, W( K, KW+1 ), LDW, ONE, W( 1, KW ), 1 )
                    352: *
                    353: *        Determine rows and columns to be interchanged and whether
                    354: *        a 1-by-1 or 2-by-2 pivot block will be used
                    355: *
                    356:          ABSAKK = ABS( W( K, KW ) )
                    357: *
                    358: *        IMAX is the row-index of the largest off-diagonal element in
                    359: *        column K, and COLMAX is its absolute value.
                    360: *        Determine both COLMAX and IMAX.
                    361: *
                    362:          IF( K.GT.1 ) THEN
                    363:             IMAX = IDAMAX( K-1, W( 1, KW ), 1 )
                    364:             COLMAX = ABS( W( IMAX, KW ) )
                    365:          ELSE
                    366:             COLMAX = ZERO
                    367:          END IF
                    368: *
                    369:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    370: *
                    371: *           Column K is zero or underflow: set INFO and continue
                    372: *
                    373:             IF( INFO.EQ.0 )
                    374:      $         INFO = K
                    375:             KP = K
                    376:             CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
                    377: *
                    378: *           Set E( K ) to zero
                    379: *
                    380:             IF( K.GT.1 )
                    381:      $         E( K ) = ZERO
                    382: *
                    383:          ELSE
                    384: *
                    385: *           ============================================================
                    386: *
                    387: *           Test for interchange
                    388: *
                    389: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
                    390: *           (used to handle NaN and Inf)
                    391: *
                    392:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
                    393: *
                    394: *              no interchange, use 1-by-1 pivot block
                    395: *
                    396:                KP = K
                    397: *
                    398:             ELSE
                    399: *
                    400:                DONE = .FALSE.
                    401: *
                    402: *              Loop until pivot found
                    403: *
                    404:    12          CONTINUE
                    405: *
                    406: *                 Begin pivot search loop body
                    407: *
                    408: *
                    409: *                 Copy column IMAX to column KW-1 of W and update it
                    410: *
                    411:                   CALL DCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
                    412:                   CALL DCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
                    413:      $                        W( IMAX+1, KW-1 ), 1 )
                    414: *
                    415:                   IF( K.LT.N )
                    416:      $               CALL DGEMV( 'No transpose', K, N-K, -ONE,
                    417:      $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
                    418:      $                           ONE, W( 1, KW-1 ), 1 )
                    419: *
                    420: *                 JMAX is the column-index of the largest off-diagonal
                    421: *                 element in row IMAX, and ROWMAX is its absolute value.
                    422: *                 Determine both ROWMAX and JMAX.
                    423: *
                    424:                   IF( IMAX.NE.K ) THEN
                    425:                      JMAX = IMAX + IDAMAX( K-IMAX, W( IMAX+1, KW-1 ),
                    426:      $                                     1 )
                    427:                      ROWMAX = ABS( W( JMAX, KW-1 ) )
                    428:                   ELSE
                    429:                      ROWMAX = ZERO
                    430:                   END IF
                    431: *
                    432:                   IF( IMAX.GT.1 ) THEN
                    433:                      ITEMP = IDAMAX( IMAX-1, W( 1, KW-1 ), 1 )
                    434:                      DTEMP = ABS( W( ITEMP, KW-1 ) )
                    435:                      IF( DTEMP.GT.ROWMAX ) THEN
                    436:                         ROWMAX = DTEMP
                    437:                         JMAX = ITEMP
                    438:                      END IF
                    439:                   END IF
                    440: *
                    441: *                 Equivalent to testing for
                    442: *                 ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
                    443: *                 (used to handle NaN and Inf)
                    444: *
                    445:                   IF( .NOT.(ABS( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
                    446:      $            THEN
                    447: *
                    448: *                    interchange rows and columns K and IMAX,
                    449: *                    use 1-by-1 pivot block
                    450: *
                    451:                      KP = IMAX
                    452: *
                    453: *                    copy column KW-1 of W to column KW of W
                    454: *
                    455:                      CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
                    456: *
                    457:                      DONE = .TRUE.
                    458: *
                    459: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
                    460: *                 (used to handle NaN and Inf)
                    461: *
                    462:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
                    463:      $            THEN
                    464: *
                    465: *                    interchange rows and columns K-1 and IMAX,
                    466: *                    use 2-by-2 pivot block
                    467: *
                    468:                      KP = IMAX
                    469:                      KSTEP = 2
                    470:                      DONE = .TRUE.
                    471:                   ELSE
                    472: *
                    473: *                    Pivot not found: set params and repeat
                    474: *
                    475:                      P = IMAX
                    476:                      COLMAX = ROWMAX
                    477:                      IMAX = JMAX
                    478: *
                    479: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
                    480: *
                    481:                      CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
                    482: *
                    483:                   END IF
                    484: *
                    485: *                 End pivot search loop body
                    486: *
                    487:                IF( .NOT. DONE ) GOTO 12
                    488: *
                    489:             END IF
                    490: *
                    491: *           ============================================================
                    492: *
                    493:             KK = K - KSTEP + 1
                    494: *
                    495: *           KKW is the column of W which corresponds to column KK of A
                    496: *
                    497:             KKW = NB + KK - N
                    498: *
                    499:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
                    500: *
                    501: *              Copy non-updated column K to column P
                    502: *
                    503:                CALL DCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
                    504:                CALL DCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
                    505: *
                    506: *              Interchange rows K and P in last N-K+1 columns of A
                    507: *              and last N-K+2 columns of W
                    508: *
                    509:                CALL DSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
                    510:                CALL DSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
                    511:             END IF
                    512: *
                    513: *           Updated column KP is already stored in column KKW of W
                    514: *
                    515:             IF( KP.NE.KK ) THEN
                    516: *
                    517: *              Copy non-updated column KK to column KP
                    518: *
                    519:                A( KP, K ) = A( KK, K )
                    520:                CALL DCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
                    521:      $                     LDA )
                    522:                CALL DCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
                    523: *
                    524: *              Interchange rows KK and KP in last N-KK+1 columns
                    525: *              of A and W
                    526: *
                    527:                CALL DSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
                    528:                CALL DSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
                    529:      $                     LDW )
                    530:             END IF
                    531: *
                    532:             IF( KSTEP.EQ.1 ) THEN
                    533: *
                    534: *              1-by-1 pivot block D(k): column KW of W now holds
                    535: *
                    536: *              W(k) = U(k)*D(k)
                    537: *
                    538: *              where U(k) is the k-th column of U
                    539: *
                    540: *              Store U(k) in column k of A
                    541: *
                    542:                CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
                    543:                IF( K.GT.1 ) THEN
                    544:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
                    545:                      R1 = ONE / A( K, K )
                    546:                      CALL DSCAL( K-1, R1, A( 1, K ), 1 )
                    547:                   ELSE IF( A( K, K ).NE.ZERO ) THEN
                    548:                      DO 14 II = 1, K - 1
                    549:                         A( II, K ) = A( II, K ) / A( K, K )
                    550:    14                CONTINUE
                    551:                   END IF
                    552: *
                    553: *                 Store the superdiagonal element of D in array E
                    554: *
                    555:                   E( K ) = ZERO
                    556: *
                    557:                END IF
                    558: *
                    559:             ELSE
                    560: *
                    561: *              2-by-2 pivot block D(k): columns KW and KW-1 of W now
                    562: *              hold
                    563: *
                    564: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
                    565: *
                    566: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
                    567: *              of U
                    568: *
                    569:                IF( K.GT.2 ) THEN
                    570: *
                    571: *                 Store U(k) and U(k-1) in columns k and k-1 of A
                    572: *
                    573:                   D12 = W( K-1, KW )
                    574:                   D11 = W( K, KW ) / D12
                    575:                   D22 = W( K-1, KW-1 ) / D12
                    576:                   T = ONE / ( D11*D22-ONE )
                    577:                   DO 20 J = 1, K - 2
                    578:                      A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
                    579:      $                             D12 )
                    580:                      A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
                    581:      $                           D12 )
                    582:    20             CONTINUE
                    583:                END IF
                    584: *
                    585: *              Copy diagonal elements of D(K) to A,
                    586: *              copy superdiagonal element of D(K) to E(K) and
                    587: *              ZERO out superdiagonal entry of A
                    588: *
                    589:                A( K-1, K-1 ) = W( K-1, KW-1 )
                    590:                A( K-1, K ) = ZERO
                    591:                A( K, K ) = W( K, KW )
                    592:                E( K ) = W( K-1, KW )
                    593:                E( K-1 ) = ZERO
                    594: *
                    595:             END IF
                    596: *
                    597: *           End column K is nonsingular
                    598: *
                    599:          END IF
                    600: *
                    601: *        Store details of the interchanges in IPIV
                    602: *
                    603:          IF( KSTEP.EQ.1 ) THEN
                    604:             IPIV( K ) = KP
                    605:          ELSE
                    606:             IPIV( K ) = -P
                    607:             IPIV( K-1 ) = -KP
                    608:          END IF
                    609: *
                    610: *        Decrease K and return to the start of the main loop
                    611: *
                    612:          K = K - KSTEP
                    613:          GO TO 10
                    614: *
                    615:    30    CONTINUE
                    616: *
                    617: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
                    618: *
                    619: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
                    620: *
                    621: *        computing blocks of NB columns at a time
                    622: *
                    623:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
                    624:             JB = MIN( NB, K-J+1 )
                    625: *
                    626: *           Update the upper triangle of the diagonal block
                    627: *
                    628:             DO 40 JJ = J, J + JB - 1
                    629:                CALL DGEMV( 'No transpose', JJ-J+1, N-K, -ONE,
                    630:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, ONE,
                    631:      $                     A( J, JJ ), 1 )
                    632:    40       CONTINUE
                    633: *
                    634: *           Update the rectangular superdiagonal block
                    635: *
                    636:             IF( J.GE.2 )
                    637:      $         CALL DGEMM( 'No transpose', 'Transpose', J-1, JB,
                    638:      $                  N-K, -ONE, A( 1, K+1 ), LDA, W( J, KW+1 ),
                    639:      $                  LDW, ONE, A( 1, J ), LDA )
                    640:    50    CONTINUE
                    641: *
                    642: *        Set KB to the number of columns factorized
                    643: *
                    644:          KB = N - K
                    645: *
                    646:       ELSE
                    647: *
                    648: *        Factorize the leading columns of A using the lower triangle
                    649: *        of A and working forwards, and compute the matrix W = L21*D
                    650: *        for use in updating A22
                    651: *
                    652: *        Initilize the unused last entry of the subdiagonal array E.
                    653: *
                    654:          E( N ) = ZERO
                    655: *
                    656: *        K is the main loop index, increasing from 1 in steps of 1 or 2
                    657: *
                    658:          K = 1
                    659:    70   CONTINUE
                    660: *
                    661: *        Exit from loop
                    662: *
                    663:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
                    664:      $      GO TO 90
                    665: *
                    666:          KSTEP = 1
                    667:          P = K
                    668: *
                    669: *        Copy column K of A to column K of W and update it
                    670: *
                    671:          CALL DCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
                    672:          IF( K.GT.1 )
                    673:      $      CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ),
                    674:      $                  LDA, W( K, 1 ), LDW, ONE, W( K, K ), 1 )
                    675: *
                    676: *        Determine rows and columns to be interchanged and whether
                    677: *        a 1-by-1 or 2-by-2 pivot block will be used
                    678: *
                    679:          ABSAKK = ABS( W( K, K ) )
                    680: *
                    681: *        IMAX is the row-index of the largest off-diagonal element in
                    682: *        column K, and COLMAX is its absolute value.
                    683: *        Determine both COLMAX and IMAX.
                    684: *
                    685:          IF( K.LT.N ) THEN
                    686:             IMAX = K + IDAMAX( N-K, W( K+1, K ), 1 )
                    687:             COLMAX = ABS( W( IMAX, K ) )
                    688:          ELSE
                    689:             COLMAX = ZERO
                    690:          END IF
                    691: *
                    692:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    693: *
                    694: *           Column K is zero or underflow: set INFO and continue
                    695: *
                    696:             IF( INFO.EQ.0 )
                    697:      $         INFO = K
                    698:             KP = K
                    699:             CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
                    700: *
                    701: *           Set E( K ) to zero
                    702: *
                    703:             IF( K.LT.N )
                    704:      $         E( K ) = ZERO
                    705: *
                    706:          ELSE
                    707: *
                    708: *           ============================================================
                    709: *
                    710: *           Test for interchange
                    711: *
                    712: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
                    713: *           (used to handle NaN and Inf)
                    714: *
                    715:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
                    716: *
                    717: *              no interchange, use 1-by-1 pivot block
                    718: *
                    719:                KP = K
                    720: *
                    721:             ELSE
                    722: *
                    723:                DONE = .FALSE.
                    724: *
                    725: *              Loop until pivot found
                    726: *
                    727:    72          CONTINUE
                    728: *
                    729: *                 Begin pivot search loop body
                    730: *
                    731: *
                    732: *                 Copy column IMAX to column K+1 of W and update it
                    733: *
                    734:                   CALL DCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
                    735:                   CALL DCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
                    736:      $                        W( IMAX, K+1 ), 1 )
                    737:                   IF( K.GT.1 )
                    738:      $               CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE,
                    739:      $                           A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
                    740:      $                           ONE, W( K, K+1 ), 1 )
                    741: *
                    742: *                 JMAX is the column-index of the largest off-diagonal
                    743: *                 element in row IMAX, and ROWMAX is its absolute value.
                    744: *                 Determine both ROWMAX and JMAX.
                    745: *
                    746:                   IF( IMAX.NE.K ) THEN
                    747:                      JMAX = K - 1 + IDAMAX( IMAX-K, W( K, K+1 ), 1 )
                    748:                      ROWMAX = ABS( W( JMAX, K+1 ) )
                    749:                   ELSE
                    750:                      ROWMAX = ZERO
                    751:                   END IF
                    752: *
                    753:                   IF( IMAX.LT.N ) THEN
                    754:                      ITEMP = IMAX + IDAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
                    755:                      DTEMP = ABS( W( ITEMP, K+1 ) )
                    756:                      IF( DTEMP.GT.ROWMAX ) THEN
                    757:                         ROWMAX = DTEMP
                    758:                         JMAX = ITEMP
                    759:                      END IF
                    760:                   END IF
                    761: *
                    762: *                 Equivalent to testing for
                    763: *                 ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
                    764: *                 (used to handle NaN and Inf)
                    765: *
                    766:                   IF( .NOT.( ABS( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
                    767:      $            THEN
                    768: *
                    769: *                    interchange rows and columns K and IMAX,
                    770: *                    use 1-by-1 pivot block
                    771: *
                    772:                      KP = IMAX
                    773: *
                    774: *                    copy column K+1 of W to column K of W
                    775: *
                    776:                      CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
                    777: *
                    778:                      DONE = .TRUE.
                    779: *
                    780: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
                    781: *                 (used to handle NaN and Inf)
                    782: *
                    783:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
                    784:      $            THEN
                    785: *
                    786: *                    interchange rows and columns K+1 and IMAX,
                    787: *                    use 2-by-2 pivot block
                    788: *
                    789:                      KP = IMAX
                    790:                      KSTEP = 2
                    791:                      DONE = .TRUE.
                    792:                   ELSE
                    793: *
                    794: *                    Pivot not found: set params and repeat
                    795: *
                    796:                      P = IMAX
                    797:                      COLMAX = ROWMAX
                    798:                      IMAX = JMAX
                    799: *
                    800: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
                    801: *
                    802:                      CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
                    803: *
                    804:                   END IF
                    805: *
                    806: *                 End pivot search loop body
                    807: *
                    808:                IF( .NOT. DONE ) GOTO 72
                    809: *
                    810:             END IF
                    811: *
                    812: *           ============================================================
                    813: *
                    814:             KK = K + KSTEP - 1
                    815: *
                    816:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
                    817: *
                    818: *              Copy non-updated column K to column P
                    819: *
                    820:                CALL DCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
                    821:                CALL DCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
                    822: *
                    823: *              Interchange rows K and P in first K columns of A
                    824: *              and first K+1 columns of W
                    825: *
                    826:                CALL DSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
                    827:                CALL DSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
                    828:             END IF
                    829: *
                    830: *           Updated column KP is already stored in column KK of W
                    831: *
                    832:             IF( KP.NE.KK ) THEN
                    833: *
                    834: *              Copy non-updated column KK to column KP
                    835: *
                    836:                A( KP, K ) = A( KK, K )
                    837:                CALL DCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
                    838:                CALL DCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
                    839: *
                    840: *              Interchange rows KK and KP in first KK columns of A and W
                    841: *
                    842:                CALL DSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
                    843:                CALL DSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
                    844:             END IF
                    845: *
                    846:             IF( KSTEP.EQ.1 ) THEN
                    847: *
                    848: *              1-by-1 pivot block D(k): column k of W now holds
                    849: *
                    850: *              W(k) = L(k)*D(k)
                    851: *
                    852: *              where L(k) is the k-th column of L
                    853: *
                    854: *              Store L(k) in column k of A
                    855: *
                    856:                CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
                    857:                IF( K.LT.N ) THEN
                    858:                   IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
                    859:                      R1 = ONE / A( K, K )
                    860:                      CALL DSCAL( N-K, R1, A( K+1, K ), 1 )
                    861:                   ELSE IF( A( K, K ).NE.ZERO ) THEN
                    862:                      DO 74 II = K + 1, N
                    863:                         A( II, K ) = A( II, K ) / A( K, K )
                    864:    74                CONTINUE
                    865:                   END IF
                    866: *
                    867: *                 Store the subdiagonal element of D in array E
                    868: *
                    869:                   E( K ) = ZERO
                    870: *
                    871:                END IF
                    872: *
                    873:             ELSE
                    874: *
                    875: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
                    876: *
                    877: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
                    878: *
                    879: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
                    880: *              of L
                    881: *
                    882:                IF( K.LT.N-1 ) THEN
                    883: *
                    884: *                 Store L(k) and L(k+1) in columns k and k+1 of A
                    885: *
                    886:                   D21 = W( K+1, K )
                    887:                   D11 = W( K+1, K+1 ) / D21
                    888:                   D22 = W( K, K ) / D21
                    889:                   T = ONE / ( D11*D22-ONE )
                    890:                   DO 80 J = K + 2, N
                    891:                      A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
                    892:      $                           D21 )
                    893:                      A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
                    894:      $                             D21 )
                    895:    80             CONTINUE
                    896:                END IF
                    897: *
                    898: *              Copy diagonal elements of D(K) to A,
                    899: *              copy subdiagonal element of D(K) to E(K) and
                    900: *              ZERO out subdiagonal entry of A
                    901: *
                    902:                A( K, K ) = W( K, K )
                    903:                A( K+1, K ) = ZERO
                    904:                A( K+1, K+1 ) = W( K+1, K+1 )
                    905:                E( K ) = W( K+1, K )
                    906:                E( K+1 ) = ZERO
                    907: *
                    908:             END IF
                    909: *
                    910: *           End column K is nonsingular
                    911: *
                    912:          END IF
                    913: *
                    914: *        Store details of the interchanges in IPIV
                    915: *
                    916:          IF( KSTEP.EQ.1 ) THEN
                    917:             IPIV( K ) = KP
                    918:          ELSE
                    919:             IPIV( K ) = -P
                    920:             IPIV( K+1 ) = -KP
                    921:          END IF
                    922: *
                    923: *        Increase K and return to the start of the main loop
                    924: *
                    925:          K = K + KSTEP
                    926:          GO TO 70
                    927: *
                    928:    90    CONTINUE
                    929: *
                    930: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
                    931: *
                    932: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
                    933: *
                    934: *        computing blocks of NB columns at a time
                    935: *
                    936:          DO 110 J = K, N, NB
                    937:             JB = MIN( NB, N-J+1 )
                    938: *
                    939: *           Update the lower triangle of the diagonal block
                    940: *
                    941:             DO 100 JJ = J, J + JB - 1
                    942:                CALL DGEMV( 'No transpose', J+JB-JJ, K-1, -ONE,
                    943:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, ONE,
                    944:      $                     A( JJ, JJ ), 1 )
                    945:   100       CONTINUE
                    946: *
                    947: *           Update the rectangular subdiagonal block
                    948: *
                    949:             IF( J+JB.LE.N )
                    950:      $         CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
                    951:      $                     K-1, -ONE, A( J+JB, 1 ), LDA, W( J, 1 ),
                    952:      $                     LDW, ONE, A( J+JB, J ), LDA )
                    953:   110    CONTINUE
                    954: *
                    955: *        Set KB to the number of columns factorized
                    956: *
                    957:          KB = K - 1
                    958: *
                    959:       END IF
                    960: *
                    961:       RETURN
                    962: *
                    963: *     End of DLASYF_RK
                    964: *
                    965:       END

CVSweb interface <joel.bertrand@systella.fr>