Annotation of rpl/lapack/lapack/dlasyf_aa.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b DLASYF_AA
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLASYF_AA + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf_aa.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf_aa.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf_aa.f">
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLASYF_AA( UPLO, J1, M, NB, A, LDA, IPIV,
        !            22: *                             H, LDH, WORK, INFO )
        !            23: *
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          UPLO
        !            26: *       INTEGER            J1, M, NB, LDA, LDH, INFO
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            IPIV( * )
        !            30: *       DOUBLE PRECISION   A( LDA, * ), H( LDH, * ), WORK( * )
        !            31: *       ..
        !            32: *
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> DLATRF_AA factorizes a panel of a real symmetric matrix A using
        !            40: *> the Aasen's algorithm. The panel consists of a set of NB rows of A
        !            41: *> when UPLO is U, or a set of NB columns when UPLO is L.
        !            42: *>
        !            43: *> In order to factorize the panel, the Aasen's algorithm requires the
        !            44: *> last row, or column, of the previous panel. The first row, or column,
        !            45: *> of A is set to be the first row, or column, of an identity matrix,
        !            46: *> which is used to factorize the first panel.
        !            47: *>
        !            48: *> The resulting J-th row of U, or J-th column of L, is stored in the
        !            49: *> (J-1)-th row, or column, of A (without the unit diagonals), while
        !            50: *> the diagonal and subdiagonal of A are overwritten by those of T.
        !            51: *>
        !            52: *> \endverbatim
        !            53: *
        !            54: *  Arguments:
        !            55: *  ==========
        !            56: *
        !            57: *> \param[in] UPLO
        !            58: *> \verbatim
        !            59: *>          UPLO is CHARACTER*1
        !            60: *>          = 'U':  Upper triangle of A is stored;
        !            61: *>          = 'L':  Lower triangle of A is stored.
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] J1
        !            65: *> \verbatim
        !            66: *>          J1 is INTEGER
        !            67: *>          The location of the first row, or column, of the panel
        !            68: *>          within the submatrix of A, passed to this routine, e.g.,
        !            69: *>          when called by DSYTRF_AA, for the first panel, J1 is 1,
        !            70: *>          while for the remaining panels, J1 is 2.
        !            71: *> \endverbatim
        !            72: *>
        !            73: *> \param[in] M
        !            74: *> \verbatim
        !            75: *>          M is INTEGER
        !            76: *>          The dimension of the submatrix. M >= 0.
        !            77: *> \endverbatim
        !            78: *>
        !            79: *> \param[in] NB
        !            80: *> \verbatim
        !            81: *>          NB is INTEGER
        !            82: *>          The dimension of the panel to be facotorized.
        !            83: *> \endverbatim
        !            84: *>
        !            85: *> \param[in,out] A
        !            86: *> \verbatim
        !            87: *>          A is DOUBLE PRECISION array, dimension (LDA,M) for
        !            88: *>          the first panel, while dimension (LDA,M+1) for the
        !            89: *>          remaining panels.
        !            90: *>
        !            91: *>          On entry, A contains the last row, or column, of
        !            92: *>          the previous panel, and the trailing submatrix of A
        !            93: *>          to be factorized, except for the first panel, only
        !            94: *>          the panel is passed.
        !            95: *>
        !            96: *>          On exit, the leading panel is factorized.
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in] LDA
        !           100: *> \verbatim
        !           101: *>          LDA is INTEGER
        !           102: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[out] IPIV
        !           106: *> \verbatim
        !           107: *>          IPIV is INTEGER array, dimension (N)
        !           108: *>          Details of the row and column interchanges,
        !           109: *>          the row and column k were interchanged with the row and
        !           110: *>          column IPIV(k).
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[in,out] H
        !           114: *> \verbatim
        !           115: *>          H is DOUBLE PRECISION workspace, dimension (LDH,NB).
        !           116: *>
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[in] LDH
        !           120: *> \verbatim
        !           121: *>          LDH is INTEGER
        !           122: *>          The leading dimension of the workspace H. LDH >= max(1,M).
        !           123: *> \endverbatim
        !           124: *>
        !           125: *> \param[out] WORK
        !           126: *> \verbatim
        !           127: *>          WORK is DOUBLE PRECISION workspace, dimension (M).
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[out] INFO
        !           131: *> \verbatim
        !           132: *>          INFO is INTEGER
        !           133: *>          = 0:  successful exit
        !           134: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           135: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
        !           136: *>                has been completed, but the block diagonal matrix D is
        !           137: *>                exactly singular, and division by zero will occur if it
        !           138: *>                is used to solve a system of equations.
        !           139: *> \endverbatim
        !           140: *
        !           141: *  Authors:
        !           142: *  ========
        !           143: *
        !           144: *> \author Univ. of Tennessee
        !           145: *> \author Univ. of California Berkeley
        !           146: *> \author Univ. of Colorado Denver
        !           147: *> \author NAG Ltd.
        !           148: *
        !           149: *> \date December 2016
        !           150: *
        !           151: *> \ingroup doubleSYcomputational
        !           152: *
        !           153: *  =====================================================================
        !           154:       SUBROUTINE DLASYF_AA( UPLO, J1, M, NB, A, LDA, IPIV,
        !           155:      $                      H, LDH, WORK, INFO )
        !           156: *
        !           157: *  -- LAPACK computational routine (version 3.7.0) --
        !           158: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           159: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           160: *     December 2016
        !           161: *
        !           162:       IMPLICIT NONE
        !           163: *
        !           164: *     .. Scalar Arguments ..
        !           165:       CHARACTER          UPLO
        !           166:       INTEGER            M, NB, J1, LDA, LDH, INFO
        !           167: *     ..
        !           168: *     .. Array Arguments ..
        !           169:       INTEGER            IPIV( * )
        !           170:       DOUBLE PRECISION   A( LDA, * ), H( LDH, * ), WORK( * )
        !           171: *     ..
        !           172: *
        !           173: *  =====================================================================
        !           174: *     .. Parameters ..
        !           175:       DOUBLE PRECISION   ZERO, ONE
        !           176:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           177: *
        !           178: *     .. Local Scalars ..
        !           179:       INTEGER            J, K, K1, I1, I2
        !           180:       DOUBLE PRECISION   PIV, ALPHA
        !           181: *     ..
        !           182: *     .. External Functions ..
        !           183:       LOGICAL            LSAME
        !           184:       INTEGER            IDAMAX, ILAENV
        !           185:       EXTERNAL           LSAME, ILAENV, IDAMAX
        !           186: *     ..
        !           187: *     .. External Subroutines ..
        !           188:       EXTERNAL           XERBLA
        !           189: *     ..
        !           190: *     .. Intrinsic Functions ..
        !           191:       INTRINSIC          MAX
        !           192: *     ..
        !           193: *     .. Executable Statements ..
        !           194: *
        !           195:       INFO = 0
        !           196:       J = 1
        !           197: *
        !           198: *     K1 is the first column of the panel to be factorized
        !           199: *     i.e.,  K1 is 2 for the first block column, and 1 for the rest of the blocks
        !           200: *
        !           201:       K1 = (2-J1)+1
        !           202: *
        !           203:       IF( LSAME( UPLO, 'U' ) ) THEN
        !           204: *
        !           205: *        .....................................................
        !           206: *        Factorize A as U**T*D*U using the upper triangle of A
        !           207: *        .....................................................
        !           208: *
        !           209:  10      CONTINUE
        !           210:          IF ( J.GT.MIN(M, NB) )
        !           211:      $      GO TO 20
        !           212: *
        !           213: *        K is the column to be factorized
        !           214: *         when being called from DSYTRF_AA,
        !           215: *         > for the first block column, J1 is 1, hence J1+J-1 is J,
        !           216: *         > for the rest of the columns, J1 is 2, and J1+J-1 is J+1,
        !           217: *
        !           218:          K = J1+J-1
        !           219: *
        !           220: *        H(J:N, J) := A(J, J:N) - H(J:N, 1:(J-1)) * L(J1:(J-1), J),
        !           221: *         where H(J:N, J) has been initialized to be A(J, J:N)
        !           222: *
        !           223:          IF( K.GT.2 ) THEN
        !           224: *
        !           225: *        K is the column to be factorized
        !           226: *         > for the first block column, K is J, skipping the first two
        !           227: *           columns
        !           228: *         > for the rest of the columns, K is J+1, skipping only the
        !           229: *           first column
        !           230: *
        !           231:             CALL DGEMV( 'No transpose', M-J+1, J-K1,
        !           232:      $                 -ONE, H( J, K1 ), LDH,
        !           233:      $                       A( 1, J ), 1,
        !           234:      $                  ONE, H( J, J ), 1 )
        !           235:          END IF
        !           236: *
        !           237: *        Copy H(i:n, i) into WORK
        !           238: *
        !           239:          CALL DCOPY( M-J+1, H( J, J ), 1, WORK( 1 ), 1 )
        !           240: *
        !           241:          IF( J.GT.K1 ) THEN
        !           242: *
        !           243: *           Compute WORK := WORK - L(J-1, J:N) * T(J-1,J),
        !           244: *            where A(J-1, J) stores T(J-1, J) and A(J-2, J:N) stores U(J-1, J:N)
        !           245: *
        !           246:             ALPHA = -A( K-1, J )
        !           247:             CALL DAXPY( M-J+1, ALPHA, A( K-2, J ), LDA, WORK( 1 ), 1 )
        !           248:          END IF
        !           249: *
        !           250: *        Set A(J, J) = T(J, J)
        !           251: *
        !           252:          A( K, J ) = WORK( 1 )
        !           253: *
        !           254:          IF( J.LT.M ) THEN
        !           255: *
        !           256: *           Compute WORK(2:N) = T(J, J) L(J, (J+1):N)
        !           257: *            where A(J, J) stores T(J, J) and A(J-1, (J+1):N) stores U(J, (J+1):N)
        !           258: *
        !           259:             IF( K.GT.1 ) THEN
        !           260:                ALPHA = -A( K, J )
        !           261:                CALL DAXPY( M-J, ALPHA, A( K-1, J+1 ), LDA,
        !           262:      $                                 WORK( 2 ), 1 )
        !           263:             ENDIF
        !           264: *
        !           265: *           Find max(|WORK(2:n)|)
        !           266: *
        !           267:             I2 = IDAMAX( M-J, WORK( 2 ), 1 ) + 1
        !           268:             PIV = WORK( I2 )
        !           269: *
        !           270: *           Apply symmetric pivot
        !           271: *
        !           272:             IF( (I2.NE.2) .AND. (PIV.NE.0) ) THEN
        !           273: *
        !           274: *              Swap WORK(I1) and WORK(I2)
        !           275: *
        !           276:                I1 = 2
        !           277:                WORK( I2 ) = WORK( I1 )
        !           278:                WORK( I1 ) = PIV
        !           279: *
        !           280: *              Swap A(I1, I1+1:N) with A(I1+1:N, I2)
        !           281: *
        !           282:                I1 = I1+J-1
        !           283:                I2 = I2+J-1
        !           284:                CALL DSWAP( I2-I1-1, A( J1+I1-1, I1+1 ), LDA,
        !           285:      $                              A( J1+I1, I2 ), 1 )
        !           286: *
        !           287: *              Swap A(I1, I2+1:N) with A(I2, I2+1:N)
        !           288: *
        !           289:                CALL DSWAP( M-I2, A( J1+I1-1, I2+1 ), LDA,
        !           290:      $                           A( J1+I2-1, I2+1 ), LDA )
        !           291: *
        !           292: *              Swap A(I1, I1) with A(I2,I2)
        !           293: *
        !           294:                PIV = A( I1+J1-1, I1 )
        !           295:                A( J1+I1-1, I1 ) = A( J1+I2-1, I2 )
        !           296:                A( J1+I2-1, I2 ) = PIV
        !           297: *
        !           298: *              Swap H(I1, 1:J1) with H(I2, 1:J1)
        !           299: *
        !           300:                CALL DSWAP( I1-1, H( I1, 1 ), LDH, H( I2, 1 ), LDH )
        !           301:                IPIV( I1 ) = I2
        !           302: *
        !           303:                IF( I1.GT.(K1-1) ) THEN
        !           304: *
        !           305: *                 Swap L(1:I1-1, I1) with L(1:I1-1, I2),
        !           306: *                  skipping the first column
        !           307: *
        !           308:                   CALL DSWAP( I1-K1+1, A( 1, I1 ), 1,
        !           309:      $                                 A( 1, I2 ), 1 )
        !           310:                END IF
        !           311:             ELSE
        !           312:                IPIV( J+1 ) = J+1
        !           313:             ENDIF
        !           314: *
        !           315: *           Set A(J, J+1) = T(J, J+1)
        !           316: *
        !           317:             A( K, J+1 ) = WORK( 2 )
        !           318:             IF( (A( K, J ).EQ.ZERO ) .AND.
        !           319:      $        ( (J.EQ.M) .OR. (A( K, J+1 ).EQ.ZERO))) THEN
        !           320:                 IF(INFO .EQ. 0) THEN
        !           321:                     INFO = J
        !           322:                 ENDIF
        !           323:             END IF
        !           324: *
        !           325:             IF( J.LT.NB ) THEN
        !           326: *
        !           327: *              Copy A(J+1:N, J+1) into H(J:N, J),
        !           328: *
        !           329:                CALL DCOPY( M-J, A( K+1, J+1 ), LDA,
        !           330:      $                          H( J+1, J+1 ), 1 )
        !           331:             END IF
        !           332: *
        !           333: *           Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1),
        !           334: *            where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1)
        !           335: *
        !           336:             IF( A( K, J+1 ).NE.ZERO ) THEN
        !           337:                ALPHA = ONE / A( K, J+1 )
        !           338:                CALL DCOPY( M-J-1, WORK( 3 ), 1, A( K, J+2 ), LDA )
        !           339:                CALL DSCAL( M-J-1, ALPHA, A( K, J+2 ), LDA )
        !           340:             ELSE
        !           341:                CALL DLASET( 'Full', 1, M-J-1, ZERO, ZERO,
        !           342:      $                      A( K, J+2 ), LDA)
        !           343:             END IF
        !           344:          ELSE
        !           345:             IF( (A( K, J ).EQ.ZERO) .AND. (INFO.EQ.0) ) THEN
        !           346:                INFO = J
        !           347:             END IF
        !           348:          END IF
        !           349:          J = J + 1
        !           350:          GO TO 10
        !           351:  20      CONTINUE
        !           352: *
        !           353:       ELSE
        !           354: *
        !           355: *        .....................................................
        !           356: *        Factorize A as L*D*L**T using the lower triangle of A
        !           357: *        .....................................................
        !           358: *
        !           359:  30      CONTINUE
        !           360:          IF( J.GT.MIN( M, NB ) )
        !           361:      $      GO TO 40
        !           362: *
        !           363: *        K is the column to be factorized
        !           364: *         when being called from DSYTRF_AA,
        !           365: *         > for the first block column, J1 is 1, hence J1+J-1 is J,
        !           366: *         > for the rest of the columns, J1 is 2, and J1+J-1 is J+1,
        !           367: *
        !           368:          K = J1+J-1
        !           369: *
        !           370: *        H(J:N, J) := A(J:N, J) - H(J:N, 1:(J-1)) * L(J, J1:(J-1))^T,
        !           371: *         where H(J:N, J) has been initialized to be A(J:N, J)
        !           372: *
        !           373:          IF( K.GT.2 ) THEN
        !           374: *
        !           375: *        K is the column to be factorized
        !           376: *         > for the first block column, K is J, skipping the first two
        !           377: *           columns
        !           378: *         > for the rest of the columns, K is J+1, skipping only the
        !           379: *           first column
        !           380: *
        !           381:             CALL DGEMV( 'No transpose', M-J+1, J-K1,
        !           382:      $                 -ONE, H( J, K1 ), LDH,
        !           383:      $                       A( J, 1 ), LDA,
        !           384:      $                  ONE, H( J, J ), 1 )
        !           385:          END IF
        !           386: *
        !           387: *        Copy H(J:N, J) into WORK
        !           388: *
        !           389:          CALL DCOPY( M-J+1, H( J, J ), 1, WORK( 1 ), 1 )
        !           390: *
        !           391:          IF( J.GT.K1 ) THEN
        !           392: *
        !           393: *           Compute WORK := WORK - L(J:N, J-1) * T(J-1,J),
        !           394: *            where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1)
        !           395: *
        !           396:             ALPHA = -A( J, K-1 )
        !           397:             CALL DAXPY( M-J+1, ALPHA, A( J, K-2 ), 1, WORK( 1 ), 1 )
        !           398:          END IF
        !           399: *
        !           400: *        Set A(J, J) = T(J, J)
        !           401: *
        !           402:          A( J, K ) = WORK( 1 )
        !           403: *
        !           404:          IF( J.LT.M ) THEN
        !           405: *
        !           406: *           Compute WORK(2:N) = T(J, J) L((J+1):N, J)
        !           407: *            where A(J, J) = T(J, J) and A((J+1):N, J-1) = L((J+1):N, J)
        !           408: *
        !           409:             IF( K.GT.1 ) THEN
        !           410:                ALPHA = -A( J, K )
        !           411:                CALL DAXPY( M-J, ALPHA, A( J+1, K-1 ), 1,
        !           412:      $                                 WORK( 2 ), 1 )
        !           413:             ENDIF
        !           414: *
        !           415: *           Find max(|WORK(2:n)|)
        !           416: *
        !           417:             I2 = IDAMAX( M-J, WORK( 2 ), 1 ) + 1
        !           418:             PIV = WORK( I2 )
        !           419: *
        !           420: *           Apply symmetric pivot
        !           421: *
        !           422:             IF( (I2.NE.2) .AND. (PIV.NE.0) ) THEN
        !           423: *
        !           424: *              Swap WORK(I1) and WORK(I2)
        !           425: *
        !           426:                I1 = 2
        !           427:                WORK( I2 ) = WORK( I1 )
        !           428:                WORK( I1 ) = PIV
        !           429: *
        !           430: *              Swap A(I1+1:N, I1) with A(I2, I1+1:N)
        !           431: *
        !           432:                I1 = I1+J-1
        !           433:                I2 = I2+J-1
        !           434:                CALL DSWAP( I2-I1-1, A( I1+1, J1+I1-1 ), 1,
        !           435:      $                              A( I2, J1+I1 ), LDA )
        !           436: *
        !           437: *              Swap A(I2+1:N, I1) with A(I2+1:N, I2)
        !           438: *
        !           439:                CALL DSWAP( M-I2, A( I2+1, J1+I1-1 ), 1,
        !           440:      $                           A( I2+1, J1+I2-1 ), 1 )
        !           441: *
        !           442: *              Swap A(I1, I1) with A(I2, I2)
        !           443: *
        !           444:                PIV = A( I1, J1+I1-1 )
        !           445:                A( I1, J1+I1-1 ) = A( I2, J1+I2-1 )
        !           446:                A( I2, J1+I2-1 ) = PIV
        !           447: *
        !           448: *              Swap H(I1, I1:J1) with H(I2, I2:J1)
        !           449: *
        !           450:                CALL DSWAP( I1-1, H( I1, 1 ), LDH, H( I2, 1 ), LDH )
        !           451:                IPIV( I1 ) = I2
        !           452: *
        !           453:                IF( I1.GT.(K1-1) ) THEN
        !           454: *
        !           455: *                 Swap L(1:I1-1, I1) with L(1:I1-1, I2),
        !           456: *                  skipping the first column
        !           457: *
        !           458:                   CALL DSWAP( I1-K1+1, A( I1, 1 ), LDA,
        !           459:      $                                 A( I2, 1 ), LDA )
        !           460:                END IF
        !           461:             ELSE
        !           462:                IPIV( J+1 ) = J+1
        !           463:             ENDIF
        !           464: *
        !           465: *           Set A(J+1, J) = T(J+1, J)
        !           466: *
        !           467:             A( J+1, K ) = WORK( 2 )
        !           468:             IF( (A( J, K ).EQ.ZERO) .AND.
        !           469:      $        ( (J.EQ.M) .OR. (A( J+1, K ).EQ.ZERO)) ) THEN
        !           470:                 IF (INFO .EQ. 0)
        !           471:      $              INFO = J
        !           472:             END IF
        !           473: *
        !           474:             IF( J.LT.NB ) THEN
        !           475: *
        !           476: *              Copy A(J+1:N, J+1) into H(J+1:N, J),
        !           477: *
        !           478:                CALL DCOPY( M-J, A( J+1, K+1 ), 1,
        !           479:      $                          H( J+1, J+1 ), 1 )
        !           480:             END IF
        !           481: *
        !           482: *           Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1),
        !           483: *            where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1)
        !           484: *
        !           485:             IF( A( J+1, K ).NE.ZERO ) THEN
        !           486:                ALPHA = ONE / A( J+1, K )
        !           487:                CALL DCOPY( M-J-1, WORK( 3 ), 1, A( J+2, K ), 1 )
        !           488:                CALL DSCAL( M-J-1, ALPHA, A( J+2, K ), 1 )
        !           489:             ELSE
        !           490:                CALL DLASET( 'Full', M-J-1, 1, ZERO, ZERO,
        !           491:      $                      A( J+2, K ), LDA )
        !           492:             END IF
        !           493:          ELSE
        !           494:             IF( (A( J, K ).EQ.ZERO) .AND. (INFO.EQ.0) ) THEN
        !           495:                INFO = J
        !           496:             END IF
        !           497:          END IF
        !           498:          J = J + 1
        !           499:          GO TO 30
        !           500:  40      CONTINUE
        !           501:       END IF
        !           502:       RETURN
        !           503: *
        !           504: *     End of DLASYF_AA
        !           505: *
        !           506:       END

CVSweb interface <joel.bertrand@systella.fr>