File:  [local] / rpl / lapack / lapack / dlasyf.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, KB, LDA, LDW, N, NB
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IPIV( * )
   14:       DOUBLE PRECISION   A( LDA, * ), W( LDW, * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  DLASYF computes a partial factorization of a real symmetric matrix A
   21: *  using the Bunch-Kaufman diagonal pivoting method. The partial
   22: *  factorization has the form:
   23: *
   24: *  A  =  ( I  U12 ) ( A11  0  ) (  I    0   )  if UPLO = 'U', or:
   25: *        ( 0  U22 ) (  0   D  ) ( U12' U22' )
   26: *
   27: *  A  =  ( L11  0 ) (  D   0  ) ( L11' L21' )  if UPLO = 'L'
   28: *        ( L21  I ) (  0  A22 ) (  0    I   )
   29: *
   30: *  where the order of D is at most NB. The actual order is returned in
   31: *  the argument KB, and is either NB or NB-1, or N if N <= NB.
   32: *
   33: *  DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code
   34: *  (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
   35: *  A22 (if UPLO = 'L').
   36: *
   37: *  Arguments
   38: *  =========
   39: *
   40: *  UPLO    (input) CHARACTER*1
   41: *          Specifies whether the upper or lower triangular part of the
   42: *          symmetric matrix A is stored:
   43: *          = 'U':  Upper triangular
   44: *          = 'L':  Lower triangular
   45: *
   46: *  N       (input) INTEGER
   47: *          The order of the matrix A.  N >= 0.
   48: *
   49: *  NB      (input) INTEGER
   50: *          The maximum number of columns of the matrix A that should be
   51: *          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   52: *          blocks.
   53: *
   54: *  KB      (output) INTEGER
   55: *          The number of columns of A that were actually factored.
   56: *          KB is either NB-1 or NB, or N if N <= NB.
   57: *
   58: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   59: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   60: *          n-by-n upper triangular part of A contains the upper
   61: *          triangular part of the matrix A, and the strictly lower
   62: *          triangular part of A is not referenced.  If UPLO = 'L', the
   63: *          leading n-by-n lower triangular part of A contains the lower
   64: *          triangular part of the matrix A, and the strictly upper
   65: *          triangular part of A is not referenced.
   66: *          On exit, A contains details of the partial factorization.
   67: *
   68: *  LDA     (input) INTEGER
   69: *          The leading dimension of the array A.  LDA >= max(1,N).
   70: *
   71: *  IPIV    (output) INTEGER array, dimension (N)
   72: *          Details of the interchanges and the block structure of D.
   73: *          If UPLO = 'U', only the last KB elements of IPIV are set;
   74: *          if UPLO = 'L', only the first KB elements are set.
   75: *
   76: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   77: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
   78: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   79: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   80: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   81: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   82: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
   83: *
   84: *  W       (workspace) DOUBLE PRECISION array, dimension (LDW,NB)
   85: *
   86: *  LDW     (input) INTEGER
   87: *          The leading dimension of the array W.  LDW >= max(1,N).
   88: *
   89: *  INFO    (output) INTEGER
   90: *          = 0: successful exit
   91: *          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
   92: *               has been completed, but the block diagonal matrix D is
   93: *               exactly singular.
   94: *
   95: *  =====================================================================
   96: *
   97: *     .. Parameters ..
   98:       DOUBLE PRECISION   ZERO, ONE
   99:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  100:       DOUBLE PRECISION   EIGHT, SEVTEN
  101:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  102: *     ..
  103: *     .. Local Scalars ..
  104:       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
  105:      $                   KSTEP, KW
  106:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D21, D22, R1,
  107:      $                   ROWMAX, T
  108: *     ..
  109: *     .. External Functions ..
  110:       LOGICAL            LSAME
  111:       INTEGER            IDAMAX
  112:       EXTERNAL           LSAME, IDAMAX
  113: *     ..
  114: *     .. External Subroutines ..
  115:       EXTERNAL           DCOPY, DGEMM, DGEMV, DSCAL, DSWAP
  116: *     ..
  117: *     .. Intrinsic Functions ..
  118:       INTRINSIC          ABS, MAX, MIN, SQRT
  119: *     ..
  120: *     .. Executable Statements ..
  121: *
  122:       INFO = 0
  123: *
  124: *     Initialize ALPHA for use in choosing pivot block size.
  125: *
  126:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  127: *
  128:       IF( LSAME( UPLO, 'U' ) ) THEN
  129: *
  130: *        Factorize the trailing columns of A using the upper triangle
  131: *        of A and working backwards, and compute the matrix W = U12*D
  132: *        for use in updating A11
  133: *
  134: *        K is the main loop index, decreasing from N in steps of 1 or 2
  135: *
  136: *        KW is the column of W which corresponds to column K of A
  137: *
  138:          K = N
  139:    10    CONTINUE
  140:          KW = NB + K - N
  141: *
  142: *        Exit from loop
  143: *
  144:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  145:      $      GO TO 30
  146: *
  147: *        Copy column K of A to column KW of W and update it
  148: *
  149:          CALL DCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  150:          IF( K.LT.N )
  151:      $      CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ), LDA,
  152:      $                  W( K, KW+1 ), LDW, ONE, W( 1, KW ), 1 )
  153: *
  154:          KSTEP = 1
  155: *
  156: *        Determine rows and columns to be interchanged and whether
  157: *        a 1-by-1 or 2-by-2 pivot block will be used
  158: *
  159:          ABSAKK = ABS( W( K, KW ) )
  160: *
  161: *        IMAX is the row-index of the largest off-diagonal element in
  162: *        column K, and COLMAX is its absolute value
  163: *
  164:          IF( K.GT.1 ) THEN
  165:             IMAX = IDAMAX( K-1, W( 1, KW ), 1 )
  166:             COLMAX = ABS( W( IMAX, KW ) )
  167:          ELSE
  168:             COLMAX = ZERO
  169:          END IF
  170: *
  171:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  172: *
  173: *           Column K is zero: set INFO and continue
  174: *
  175:             IF( INFO.EQ.0 )
  176:      $         INFO = K
  177:             KP = K
  178:          ELSE
  179:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  180: *
  181: *              no interchange, use 1-by-1 pivot block
  182: *
  183:                KP = K
  184:             ELSE
  185: *
  186: *              Copy column IMAX to column KW-1 of W and update it
  187: *
  188:                CALL DCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  189:                CALL DCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  190:      $                     W( IMAX+1, KW-1 ), 1 )
  191:                IF( K.LT.N )
  192:      $            CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ),
  193:      $                        LDA, W( IMAX, KW+1 ), LDW, ONE,
  194:      $                        W( 1, KW-1 ), 1 )
  195: *
  196: *              JMAX is the column-index of the largest off-diagonal
  197: *              element in row IMAX, and ROWMAX is its absolute value
  198: *
  199:                JMAX = IMAX + IDAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  200:                ROWMAX = ABS( W( JMAX, KW-1 ) )
  201:                IF( IMAX.GT.1 ) THEN
  202:                   JMAX = IDAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  203:                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, KW-1 ) ) )
  204:                END IF
  205: *
  206:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  207: *
  208: *                 no interchange, use 1-by-1 pivot block
  209: *
  210:                   KP = K
  211:                ELSE IF( ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN
  212: *
  213: *                 interchange rows and columns K and IMAX, use 1-by-1
  214: *                 pivot block
  215: *
  216:                   KP = IMAX
  217: *
  218: *                 copy column KW-1 of W to column KW
  219: *
  220:                   CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  221:                ELSE
  222: *
  223: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  224: *                 pivot block
  225: *
  226:                   KP = IMAX
  227:                   KSTEP = 2
  228:                END IF
  229:             END IF
  230: *
  231:             KK = K - KSTEP + 1
  232:             KKW = NB + KK - N
  233: *
  234: *           Updated column KP is already stored in column KKW of W
  235: *
  236:             IF( KP.NE.KK ) THEN
  237: *
  238: *              Copy non-updated column KK to column KP
  239: *
  240:                A( KP, K ) = A( KK, K )
  241:                CALL DCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  242:      $                     LDA )
  243:                CALL DCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
  244: *
  245: *              Interchange rows KK and KP in last KK columns of A and W
  246: *
  247:                CALL DSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
  248:                CALL DSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  249:      $                     LDW )
  250:             END IF
  251: *
  252:             IF( KSTEP.EQ.1 ) THEN
  253: *
  254: *              1-by-1 pivot block D(k): column KW of W now holds
  255: *
  256: *              W(k) = U(k)*D(k)
  257: *
  258: *              where U(k) is the k-th column of U
  259: *
  260: *              Store U(k) in column k of A
  261: *
  262:                CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  263:                R1 = ONE / A( K, K )
  264:                CALL DSCAL( K-1, R1, A( 1, K ), 1 )
  265:             ELSE
  266: *
  267: *              2-by-2 pivot block D(k): columns KW and KW-1 of W now
  268: *              hold
  269: *
  270: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  271: *
  272: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  273: *              of U
  274: *
  275:                IF( K.GT.2 ) THEN
  276: *
  277: *                 Store U(k) and U(k-1) in columns k and k-1 of A
  278: *
  279:                   D21 = W( K-1, KW )
  280:                   D11 = W( K, KW ) / D21
  281:                   D22 = W( K-1, KW-1 ) / D21
  282:                   T = ONE / ( D11*D22-ONE )
  283:                   D21 = T / D21
  284:                   DO 20 J = 1, K - 2
  285:                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
  286:                      A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) )
  287:    20             CONTINUE
  288:                END IF
  289: *
  290: *              Copy D(k) to A
  291: *
  292:                A( K-1, K-1 ) = W( K-1, KW-1 )
  293:                A( K-1, K ) = W( K-1, KW )
  294:                A( K, K ) = W( K, KW )
  295:             END IF
  296:          END IF
  297: *
  298: *        Store details of the interchanges in IPIV
  299: *
  300:          IF( KSTEP.EQ.1 ) THEN
  301:             IPIV( K ) = KP
  302:          ELSE
  303:             IPIV( K ) = -KP
  304:             IPIV( K-1 ) = -KP
  305:          END IF
  306: *
  307: *        Decrease K and return to the start of the main loop
  308: *
  309:          K = K - KSTEP
  310:          GO TO 10
  311: *
  312:    30    CONTINUE
  313: *
  314: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  315: *
  316: *        A11 := A11 - U12*D*U12' = A11 - U12*W'
  317: *
  318: *        computing blocks of NB columns at a time
  319: *
  320:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  321:             JB = MIN( NB, K-J+1 )
  322: *
  323: *           Update the upper triangle of the diagonal block
  324: *
  325:             DO 40 JJ = J, J + JB - 1
  326:                CALL DGEMV( 'No transpose', JJ-J+1, N-K, -ONE,
  327:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, ONE,
  328:      $                     A( J, JJ ), 1 )
  329:    40       CONTINUE
  330: *
  331: *           Update the rectangular superdiagonal block
  332: *
  333:             CALL DGEMM( 'No transpose', 'Transpose', J-1, JB, N-K, -ONE,
  334:      $                  A( 1, K+1 ), LDA, W( J, KW+1 ), LDW, ONE,
  335:      $                  A( 1, J ), LDA )
  336:    50    CONTINUE
  337: *
  338: *        Put U12 in standard form by partially undoing the interchanges
  339: *        in columns k+1:n
  340: *
  341:          J = K + 1
  342:    60    CONTINUE
  343:          JJ = J
  344:          JP = IPIV( J )
  345:          IF( JP.LT.0 ) THEN
  346:             JP = -JP
  347:             J = J + 1
  348:          END IF
  349:          J = J + 1
  350:          IF( JP.NE.JJ .AND. J.LE.N )
  351:      $      CALL DSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
  352:          IF( J.LE.N )
  353:      $      GO TO 60
  354: *
  355: *        Set KB to the number of columns factorized
  356: *
  357:          KB = N - K
  358: *
  359:       ELSE
  360: *
  361: *        Factorize the leading columns of A using the lower triangle
  362: *        of A and working forwards, and compute the matrix W = L21*D
  363: *        for use in updating A22
  364: *
  365: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  366: *
  367:          K = 1
  368:    70    CONTINUE
  369: *
  370: *        Exit from loop
  371: *
  372:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  373:      $      GO TO 90
  374: *
  375: *        Copy column K of A to column K of W and update it
  376: *
  377:          CALL DCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  378:          CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ), LDA,
  379:      $               W( K, 1 ), LDW, ONE, W( K, K ), 1 )
  380: *
  381:          KSTEP = 1
  382: *
  383: *        Determine rows and columns to be interchanged and whether
  384: *        a 1-by-1 or 2-by-2 pivot block will be used
  385: *
  386:          ABSAKK = ABS( W( K, K ) )
  387: *
  388: *        IMAX is the row-index of the largest off-diagonal element in
  389: *        column K, and COLMAX is its absolute value
  390: *
  391:          IF( K.LT.N ) THEN
  392:             IMAX = K + IDAMAX( N-K, W( K+1, K ), 1 )
  393:             COLMAX = ABS( W( IMAX, K ) )
  394:          ELSE
  395:             COLMAX = ZERO
  396:          END IF
  397: *
  398:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  399: *
  400: *           Column K is zero: set INFO and continue
  401: *
  402:             IF( INFO.EQ.0 )
  403:      $         INFO = K
  404:             KP = K
  405:          ELSE
  406:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  407: *
  408: *              no interchange, use 1-by-1 pivot block
  409: *
  410:                KP = K
  411:             ELSE
  412: *
  413: *              Copy column IMAX to column K+1 of W and update it
  414: *
  415:                CALL DCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
  416:                CALL DCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, K+1 ),
  417:      $                     1 )
  418:                CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ),
  419:      $                     LDA, W( IMAX, 1 ), LDW, ONE, W( K, K+1 ), 1 )
  420: *
  421: *              JMAX is the column-index of the largest off-diagonal
  422: *              element in row IMAX, and ROWMAX is its absolute value
  423: *
  424:                JMAX = K - 1 + IDAMAX( IMAX-K, W( K, K+1 ), 1 )
  425:                ROWMAX = ABS( W( JMAX, K+1 ) )
  426:                IF( IMAX.LT.N ) THEN
  427:                   JMAX = IMAX + IDAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
  428:                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, K+1 ) ) )
  429:                END IF
  430: *
  431:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  432: *
  433: *                 no interchange, use 1-by-1 pivot block
  434: *
  435:                   KP = K
  436:                ELSE IF( ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN
  437: *
  438: *                 interchange rows and columns K and IMAX, use 1-by-1
  439: *                 pivot block
  440: *
  441:                   KP = IMAX
  442: *
  443: *                 copy column K+1 of W to column K
  444: *
  445:                   CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  446:                ELSE
  447: *
  448: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  449: *                 pivot block
  450: *
  451:                   KP = IMAX
  452:                   KSTEP = 2
  453:                END IF
  454:             END IF
  455: *
  456:             KK = K + KSTEP - 1
  457: *
  458: *           Updated column KP is already stored in column KK of W
  459: *
  460:             IF( KP.NE.KK ) THEN
  461: *
  462: *              Copy non-updated column KK to column KP
  463: *
  464:                A( KP, K ) = A( KK, K )
  465:                CALL DCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
  466:                CALL DCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
  467: *
  468: *              Interchange rows KK and KP in first KK columns of A and W
  469: *
  470:                CALL DSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  471:                CALL DSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  472:             END IF
  473: *
  474:             IF( KSTEP.EQ.1 ) THEN
  475: *
  476: *              1-by-1 pivot block D(k): column k of W now holds
  477: *
  478: *              W(k) = L(k)*D(k)
  479: *
  480: *              where L(k) is the k-th column of L
  481: *
  482: *              Store L(k) in column k of A
  483: *
  484:                CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  485:                IF( K.LT.N ) THEN
  486:                   R1 = ONE / A( K, K )
  487:                   CALL DSCAL( N-K, R1, A( K+1, K ), 1 )
  488:                END IF
  489:             ELSE
  490: *
  491: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  492: *
  493: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  494: *
  495: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  496: *              of L
  497: *
  498:                IF( K.LT.N-1 ) THEN
  499: *
  500: *                 Store L(k) and L(k+1) in columns k and k+1 of A
  501: *
  502:                   D21 = W( K+1, K )
  503:                   D11 = W( K+1, K+1 ) / D21
  504:                   D22 = W( K, K ) / D21
  505:                   T = ONE / ( D11*D22-ONE )
  506:                   D21 = T / D21
  507:                   DO 80 J = K + 2, N
  508:                      A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) )
  509:                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
  510:    80             CONTINUE
  511:                END IF
  512: *
  513: *              Copy D(k) to A
  514: *
  515:                A( K, K ) = W( K, K )
  516:                A( K+1, K ) = W( K+1, K )
  517:                A( K+1, K+1 ) = W( K+1, K+1 )
  518:             END IF
  519:          END IF
  520: *
  521: *        Store details of the interchanges in IPIV
  522: *
  523:          IF( KSTEP.EQ.1 ) THEN
  524:             IPIV( K ) = KP
  525:          ELSE
  526:             IPIV( K ) = -KP
  527:             IPIV( K+1 ) = -KP
  528:          END IF
  529: *
  530: *        Increase K and return to the start of the main loop
  531: *
  532:          K = K + KSTEP
  533:          GO TO 70
  534: *
  535:    90    CONTINUE
  536: *
  537: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
  538: *
  539: *        A22 := A22 - L21*D*L21' = A22 - L21*W'
  540: *
  541: *        computing blocks of NB columns at a time
  542: *
  543:          DO 110 J = K, N, NB
  544:             JB = MIN( NB, N-J+1 )
  545: *
  546: *           Update the lower triangle of the diagonal block
  547: *
  548:             DO 100 JJ = J, J + JB - 1
  549:                CALL DGEMV( 'No transpose', J+JB-JJ, K-1, -ONE,
  550:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, ONE,
  551:      $                     A( JJ, JJ ), 1 )
  552:   100       CONTINUE
  553: *
  554: *           Update the rectangular subdiagonal block
  555: *
  556:             IF( J+JB.LE.N )
  557:      $         CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  558:      $                     K-1, -ONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
  559:      $                     ONE, A( J+JB, J ), LDA )
  560:   110    CONTINUE
  561: *
  562: *        Put L21 in standard form by partially undoing the interchanges
  563: *        in columns 1:k-1
  564: *
  565:          J = K - 1
  566:   120    CONTINUE
  567:          JJ = J
  568:          JP = IPIV( J )
  569:          IF( JP.LT.0 ) THEN
  570:             JP = -JP
  571:             J = J - 1
  572:          END IF
  573:          J = J - 1
  574:          IF( JP.NE.JJ .AND. J.GE.1 )
  575:      $      CALL DSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
  576:          IF( J.GE.1 )
  577:      $      GO TO 120
  578: *
  579: *        Set KB to the number of columns factorized
  580: *
  581:          KB = K - 1
  582: *
  583:       END IF
  584:       RETURN
  585: *
  586: *     End of DLASYF
  587: *
  588:       END

CVSweb interface <joel.bertrand@systella.fr>