File:  [local] / rpl / lapack / lapack / dlasyf.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:01 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLASYF computes a partial factorization of a real symmetric matrix using the Bunch-Kaufman diagonal pivoting method.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLASYF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   A( LDA, * ), W( LDW, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLASYF computes a partial factorization of a real symmetric matrix A
   39: *> using the Bunch-Kaufman diagonal pivoting method. The partial
   40: *> factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
   44: *>
   45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
   46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *>
   51: *> DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code
   52: *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
   53: *> A22 (if UPLO = 'L').
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          Specifies whether the upper or lower triangular part of the
   63: *>          symmetric matrix A is stored:
   64: *>          = 'U':  Upper triangular
   65: *>          = 'L':  Lower triangular
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrix A.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] NB
   75: *> \verbatim
   76: *>          NB is INTEGER
   77: *>          The maximum number of columns of the matrix A that should be
   78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   79: *>          blocks.
   80: *> \endverbatim
   81: *>
   82: *> \param[out] KB
   83: *> \verbatim
   84: *>          KB is INTEGER
   85: *>          The number of columns of A that were actually factored.
   86: *>          KB is either NB-1 or NB, or N if N <= NB.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] A
   90: *> \verbatim
   91: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   92: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   93: *>          n-by-n upper triangular part of A contains the upper
   94: *>          triangular part of the matrix A, and the strictly lower
   95: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   96: *>          leading n-by-n lower triangular part of A contains the lower
   97: *>          triangular part of the matrix A, and the strictly upper
   98: *>          triangular part of A is not referenced.
   99: *>          On exit, A contains details of the partial factorization.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDA
  103: *> \verbatim
  104: *>          LDA is INTEGER
  105: *>          The leading dimension of the array A.  LDA >= max(1,N).
  106: *> \endverbatim
  107: *>
  108: *> \param[out] IPIV
  109: *> \verbatim
  110: *>          IPIV is INTEGER array, dimension (N)
  111: *>          Details of the interchanges and the block structure of D.
  112: *>
  113: *>          If UPLO = 'U':
  114: *>             Only the last KB elements of IPIV are set.
  115: *>
  116: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  117: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  118: *>
  119: *>             If IPIV(k) = IPIV(k-1) < 0, then rows and columns
  120: *>             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  121: *>             is a 2-by-2 diagonal block.
  122: *>
  123: *>          If UPLO = 'L':
  124: *>             Only the first KB elements of IPIV are set.
  125: *>
  126: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  127: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  128: *>
  129: *>             If IPIV(k) = IPIV(k+1) < 0, then rows and columns
  130: *>             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
  131: *>             is a 2-by-2 diagonal block.
  132: *> \endverbatim
  133: *>
  134: *> \param[out] W
  135: *> \verbatim
  136: *>          W is DOUBLE PRECISION array, dimension (LDW,NB)
  137: *> \endverbatim
  138: *>
  139: *> \param[in] LDW
  140: *> \verbatim
  141: *>          LDW is INTEGER
  142: *>          The leading dimension of the array W.  LDW >= max(1,N).
  143: *> \endverbatim
  144: *>
  145: *> \param[out] INFO
  146: *> \verbatim
  147: *>          INFO is INTEGER
  148: *>          = 0: successful exit
  149: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  150: *>               has been completed, but the block diagonal matrix D is
  151: *>               exactly singular.
  152: *> \endverbatim
  153: *
  154: *  Authors:
  155: *  ========
  156: *
  157: *> \author Univ. of Tennessee
  158: *> \author Univ. of California Berkeley
  159: *> \author Univ. of Colorado Denver
  160: *> \author NAG Ltd.
  161: *
  162: *> \date November 2013
  163: *
  164: *> \ingroup doubleSYcomputational
  165: *
  166: *> \par Contributors:
  167: *  ==================
  168: *>
  169: *> \verbatim
  170: *>
  171: *>  November 2013,  Igor Kozachenko,
  172: *>                  Computer Science Division,
  173: *>                  University of California, Berkeley
  174: *> \endverbatim
  175: *
  176: *  =====================================================================
  177:       SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
  178: *
  179: *  -- LAPACK computational routine (version 3.5.0) --
  180: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  181: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  182: *     November 2013
  183: *
  184: *     .. Scalar Arguments ..
  185:       CHARACTER          UPLO
  186:       INTEGER            INFO, KB, LDA, LDW, N, NB
  187: *     ..
  188: *     .. Array Arguments ..
  189:       INTEGER            IPIV( * )
  190:       DOUBLE PRECISION   A( LDA, * ), W( LDW, * )
  191: *     ..
  192: *
  193: *  =====================================================================
  194: *
  195: *     .. Parameters ..
  196:       DOUBLE PRECISION   ZERO, ONE
  197:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  198:       DOUBLE PRECISION   EIGHT, SEVTEN
  199:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  200: *     ..
  201: *     .. Local Scalars ..
  202:       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
  203:      $                   KSTEP, KW
  204:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D21, D22, R1,
  205:      $                   ROWMAX, T
  206: *     ..
  207: *     .. External Functions ..
  208:       LOGICAL            LSAME
  209:       INTEGER            IDAMAX
  210:       EXTERNAL           LSAME, IDAMAX
  211: *     ..
  212: *     .. External Subroutines ..
  213:       EXTERNAL           DCOPY, DGEMM, DGEMV, DSCAL, DSWAP
  214: *     ..
  215: *     .. Intrinsic Functions ..
  216:       INTRINSIC          ABS, MAX, MIN, SQRT
  217: *     ..
  218: *     .. Executable Statements ..
  219: *
  220:       INFO = 0
  221: *
  222: *     Initialize ALPHA for use in choosing pivot block size.
  223: *
  224:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  225: *
  226:       IF( LSAME( UPLO, 'U' ) ) THEN
  227: *
  228: *        Factorize the trailing columns of A using the upper triangle
  229: *        of A and working backwards, and compute the matrix W = U12*D
  230: *        for use in updating A11
  231: *
  232: *        K is the main loop index, decreasing from N in steps of 1 or 2
  233: *
  234: *        KW is the column of W which corresponds to column K of A
  235: *
  236:          K = N
  237:    10    CONTINUE
  238:          KW = NB + K - N
  239: *
  240: *        Exit from loop
  241: *
  242:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  243:      $      GO TO 30
  244: *
  245: *        Copy column K of A to column KW of W and update it
  246: *
  247:          CALL DCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  248:          IF( K.LT.N )
  249:      $      CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ), LDA,
  250:      $                  W( K, KW+1 ), LDW, ONE, W( 1, KW ), 1 )
  251: *
  252:          KSTEP = 1
  253: *
  254: *        Determine rows and columns to be interchanged and whether
  255: *        a 1-by-1 or 2-by-2 pivot block will be used
  256: *
  257:          ABSAKK = ABS( W( K, KW ) )
  258: *
  259: *        IMAX is the row-index of the largest off-diagonal element in
  260: *        column K, and COLMAX is its absolute value.
  261: *        Determine both COLMAX and IMAX.
  262: *
  263:          IF( K.GT.1 ) THEN
  264:             IMAX = IDAMAX( K-1, W( 1, KW ), 1 )
  265:             COLMAX = ABS( W( IMAX, KW ) )
  266:          ELSE
  267:             COLMAX = ZERO
  268:          END IF
  269: *
  270:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  271: *
  272: *           Column K is zero or underflow: set INFO and continue
  273: *
  274:             IF( INFO.EQ.0 )
  275:      $         INFO = K
  276:             KP = K
  277:          ELSE
  278:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  279: *
  280: *              no interchange, use 1-by-1 pivot block
  281: *
  282:                KP = K
  283:             ELSE
  284: *
  285: *              Copy column IMAX to column KW-1 of W and update it
  286: *
  287:                CALL DCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  288:                CALL DCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  289:      $                     W( IMAX+1, KW-1 ), 1 )
  290:                IF( K.LT.N )
  291:      $            CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ),
  292:      $                        LDA, W( IMAX, KW+1 ), LDW, ONE,
  293:      $                        W( 1, KW-1 ), 1 )
  294: *
  295: *              JMAX is the column-index of the largest off-diagonal
  296: *              element in row IMAX, and ROWMAX is its absolute value
  297: *
  298:                JMAX = IMAX + IDAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  299:                ROWMAX = ABS( W( JMAX, KW-1 ) )
  300:                IF( IMAX.GT.1 ) THEN
  301:                   JMAX = IDAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  302:                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, KW-1 ) ) )
  303:                END IF
  304: *
  305:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  306: *
  307: *                 no interchange, use 1-by-1 pivot block
  308: *
  309:                   KP = K
  310:                ELSE IF( ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN
  311: *
  312: *                 interchange rows and columns K and IMAX, use 1-by-1
  313: *                 pivot block
  314: *
  315:                   KP = IMAX
  316: *
  317: *                 copy column KW-1 of W to column KW of W
  318: *
  319:                   CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  320:                ELSE
  321: *
  322: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  323: *                 pivot block
  324: *
  325:                   KP = IMAX
  326:                   KSTEP = 2
  327:                END IF
  328:             END IF
  329: *
  330: *           ============================================================
  331: *
  332: *           KK is the column of A where pivoting step stopped
  333: *
  334:             KK = K - KSTEP + 1
  335: *
  336: *           KKW is the column of W which corresponds to column KK of A
  337: *
  338:             KKW = NB + KK - N
  339: *
  340: *           Interchange rows and columns KP and KK.
  341: *           Updated column KP is already stored in column KKW of W.
  342: *
  343:             IF( KP.NE.KK ) THEN
  344: *
  345: *              Copy non-updated column KK to column KP of submatrix A
  346: *              at step K. No need to copy element into column K
  347: *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
  348: *              will be later overwritten.
  349: *
  350:                A( KP, KP ) = A( KK, KK )
  351:                CALL DCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  352:      $                     LDA )
  353:                IF( KP.GT.1 )
  354:      $            CALL DCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  355: *
  356: *              Interchange rows KK and KP in last K+1 to N columns of A
  357: *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
  358: *              later overwritten). Interchange rows KK and KP
  359: *              in last KKW to NB columns of W.
  360: *
  361:                IF( K.LT.N )
  362:      $            CALL DSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
  363:      $                        LDA )
  364:                CALL DSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  365:      $                     LDW )
  366:             END IF
  367: *
  368:             IF( KSTEP.EQ.1 ) THEN
  369: *
  370: *              1-by-1 pivot block D(k): column kw of W now holds
  371: *
  372: *              W(kw) = U(k)*D(k),
  373: *
  374: *              where U(k) is the k-th column of U
  375: *
  376: *              Store subdiag. elements of column U(k)
  377: *              and 1-by-1 block D(k) in column k of A.
  378: *              NOTE: Diagonal element U(k,k) is a UNIT element
  379: *              and not stored.
  380: *                 A(k,k) := D(k,k) = W(k,kw)
  381: *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
  382: *
  383:                CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  384:                R1 = ONE / A( K, K )
  385:                CALL DSCAL( K-1, R1, A( 1, K ), 1 )
  386: *
  387:             ELSE
  388: *
  389: *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
  390: *
  391: *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
  392: *
  393: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  394: *              of U
  395: *
  396: *              Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
  397: *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
  398: *              NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
  399: *              block and not stored.
  400: *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
  401: *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
  402: *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
  403: *
  404:                IF( K.GT.2 ) THEN
  405: *
  406: *                 Compose the columns of the inverse of 2-by-2 pivot
  407: *                 block D in the following way to reduce the number
  408: *                 of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by
  409: *                 this inverse
  410: *
  411: *                 D**(-1) = ( d11 d21 )**(-1) =
  412: *                           ( d21 d22 )
  413: *
  414: *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
  415: *                                        ( (-d21 ) ( d11 ) )
  416: *
  417: *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
  418: *
  419: *                   * ( ( d22/d21 ) (      -1 ) ) =
  420: *                     ( (      -1 ) ( d11/d21 ) )
  421: *
  422: *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
  423: *                                           ( ( -1  ) ( D22 ) )
  424: *
  425: *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
  426: *                               ( (  -1 ) ( D22 ) )
  427: *
  428: *                 = D21 * ( ( D11 ) (  -1 ) )
  429: *                         ( (  -1 ) ( D22 ) )
  430: *
  431:                   D21 = W( K-1, KW )
  432:                   D11 = W( K, KW ) / D21
  433:                   D22 = W( K-1, KW-1 ) / D21
  434:                   T = ONE / ( D11*D22-ONE )
  435:                   D21 = T / D21
  436: *
  437: *                 Update elements in columns A(k-1) and A(k) as
  438: *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
  439: *                 of D**(-1)
  440: *
  441:                   DO 20 J = 1, K - 2
  442:                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
  443:                      A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) )
  444:    20             CONTINUE
  445:                END IF
  446: *
  447: *              Copy D(k) to A
  448: *
  449:                A( K-1, K-1 ) = W( K-1, KW-1 )
  450:                A( K-1, K ) = W( K-1, KW )
  451:                A( K, K ) = W( K, KW )
  452: *
  453:             END IF
  454: *
  455:          END IF
  456: *
  457: *        Store details of the interchanges in IPIV
  458: *
  459:          IF( KSTEP.EQ.1 ) THEN
  460:             IPIV( K ) = KP
  461:          ELSE
  462:             IPIV( K ) = -KP
  463:             IPIV( K-1 ) = -KP
  464:          END IF
  465: *
  466: *        Decrease K and return to the start of the main loop
  467: *
  468:          K = K - KSTEP
  469:          GO TO 10
  470: *
  471:    30    CONTINUE
  472: *
  473: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  474: *
  475: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
  476: *
  477: *        computing blocks of NB columns at a time
  478: *
  479:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  480:             JB = MIN( NB, K-J+1 )
  481: *
  482: *           Update the upper triangle of the diagonal block
  483: *
  484:             DO 40 JJ = J, J + JB - 1
  485:                CALL DGEMV( 'No transpose', JJ-J+1, N-K, -ONE,
  486:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, ONE,
  487:      $                     A( J, JJ ), 1 )
  488:    40       CONTINUE
  489: *
  490: *           Update the rectangular superdiagonal block
  491: *
  492:             CALL DGEMM( 'No transpose', 'Transpose', J-1, JB, N-K, -ONE,
  493:      $                  A( 1, K+1 ), LDA, W( J, KW+1 ), LDW, ONE,
  494:      $                  A( 1, J ), LDA )
  495:    50    CONTINUE
  496: *
  497: *        Put U12 in standard form by partially undoing the interchanges
  498: *        in columns k+1:n looping backwards from k+1 to n
  499: *
  500:          J = K + 1
  501:    60    CONTINUE
  502: *
  503: *           Undo the interchanges (if any) of rows JJ and JP at each
  504: *           step J
  505: *
  506: *           (Here, J is a diagonal index)
  507:             JJ = J
  508:             JP = IPIV( J )
  509:             IF( JP.LT.0 ) THEN
  510:                JP = -JP
  511: *              (Here, J is a diagonal index)
  512:                J = J + 1
  513:             END IF
  514: *           (NOTE: Here, J is used to determine row length. Length N-J+1
  515: *           of the rows to swap back doesn't include diagonal element)
  516:             J = J + 1
  517:             IF( JP.NE.JJ .AND. J.LE.N )
  518:      $         CALL DSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
  519:          IF( J.LT.N )
  520:      $      GO TO 60
  521: *
  522: *        Set KB to the number of columns factorized
  523: *
  524:          KB = N - K
  525: *
  526:       ELSE
  527: *
  528: *        Factorize the leading columns of A using the lower triangle
  529: *        of A and working forwards, and compute the matrix W = L21*D
  530: *        for use in updating A22
  531: *
  532: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  533: *
  534:          K = 1
  535:    70    CONTINUE
  536: *
  537: *        Exit from loop
  538: *
  539:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  540:      $      GO TO 90
  541: *
  542: *        Copy column K of A to column K of W and update it
  543: *
  544:          CALL DCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  545:          CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ), LDA,
  546:      $               W( K, 1 ), LDW, ONE, W( K, K ), 1 )
  547: *
  548:          KSTEP = 1
  549: *
  550: *        Determine rows and columns to be interchanged and whether
  551: *        a 1-by-1 or 2-by-2 pivot block will be used
  552: *
  553:          ABSAKK = ABS( W( K, K ) )
  554: *
  555: *        IMAX is the row-index of the largest off-diagonal element in
  556: *        column K, and COLMAX is its absolute value.
  557: *        Determine both COLMAX and IMAX.
  558: *
  559:          IF( K.LT.N ) THEN
  560:             IMAX = K + IDAMAX( N-K, W( K+1, K ), 1 )
  561:             COLMAX = ABS( W( IMAX, K ) )
  562:          ELSE
  563:             COLMAX = ZERO
  564:          END IF
  565: *
  566:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  567: *
  568: *           Column K is zero or underflow: set INFO and continue
  569: *
  570:             IF( INFO.EQ.0 )
  571:      $         INFO = K
  572:             KP = K
  573:          ELSE
  574:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  575: *
  576: *              no interchange, use 1-by-1 pivot block
  577: *
  578:                KP = K
  579:             ELSE
  580: *
  581: *              Copy column IMAX to column K+1 of W and update it
  582: *
  583:                CALL DCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
  584:                CALL DCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, K+1 ),
  585:      $                     1 )
  586:                CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ),
  587:      $                     LDA, W( IMAX, 1 ), LDW, ONE, W( K, K+1 ), 1 )
  588: *
  589: *              JMAX is the column-index of the largest off-diagonal
  590: *              element in row IMAX, and ROWMAX is its absolute value
  591: *
  592:                JMAX = K - 1 + IDAMAX( IMAX-K, W( K, K+1 ), 1 )
  593:                ROWMAX = ABS( W( JMAX, K+1 ) )
  594:                IF( IMAX.LT.N ) THEN
  595:                   JMAX = IMAX + IDAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
  596:                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, K+1 ) ) )
  597:                END IF
  598: *
  599:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  600: *
  601: *                 no interchange, use 1-by-1 pivot block
  602: *
  603:                   KP = K
  604:                ELSE IF( ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN
  605: *
  606: *                 interchange rows and columns K and IMAX, use 1-by-1
  607: *                 pivot block
  608: *
  609:                   KP = IMAX
  610: *
  611: *                 copy column K+1 of W to column K of W
  612: *
  613:                   CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  614:                ELSE
  615: *
  616: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  617: *                 pivot block
  618: *
  619:                   KP = IMAX
  620:                   KSTEP = 2
  621:                END IF
  622:             END IF
  623: *
  624: *           ============================================================
  625: *
  626: *           KK is the column of A where pivoting step stopped
  627: *
  628:             KK = K + KSTEP - 1
  629: *
  630: *           Interchange rows and columns KP and KK.
  631: *           Updated column KP is already stored in column KK of W.
  632: *
  633:             IF( KP.NE.KK ) THEN
  634: *
  635: *              Copy non-updated column KK to column KP of submatrix A
  636: *              at step K. No need to copy element into column K
  637: *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
  638: *              will be later overwritten.
  639: *
  640:                A( KP, KP ) = A( KK, KK )
  641:                CALL DCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  642:      $                     LDA )
  643:                IF( KP.LT.N )
  644:      $            CALL DCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  645: *
  646: *              Interchange rows KK and KP in first K-1 columns of A
  647: *              (columns K (or K and K+1 for 2-by-2 pivot) of A will be
  648: *              later overwritten). Interchange rows KK and KP
  649: *              in first KK columns of W.
  650: *
  651:                IF( K.GT.1 )
  652:      $            CALL DSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  653:                CALL DSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  654:             END IF
  655: *
  656:             IF( KSTEP.EQ.1 ) THEN
  657: *
  658: *              1-by-1 pivot block D(k): column k of W now holds
  659: *
  660: *              W(k) = L(k)*D(k),
  661: *
  662: *              where L(k) is the k-th column of L
  663: *
  664: *              Store subdiag. elements of column L(k)
  665: *              and 1-by-1 block D(k) in column k of A.
  666: *              (NOTE: Diagonal element L(k,k) is a UNIT element
  667: *              and not stored)
  668: *                 A(k,k) := D(k,k) = W(k,k)
  669: *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
  670: *
  671:                CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  672:                IF( K.LT.N ) THEN
  673:                   R1 = ONE / A( K, K )
  674:                   CALL DSCAL( N-K, R1, A( K+1, K ), 1 )
  675:                END IF
  676: *
  677:             ELSE
  678: *
  679: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  680: *
  681: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  682: *
  683: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  684: *              of L
  685: *
  686: *              Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
  687: *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
  688: *              (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
  689: *              block and not stored)
  690: *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
  691: *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
  692: *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
  693: *
  694:                IF( K.LT.N-1 ) THEN
  695: *
  696: *                 Compose the columns of the inverse of 2-by-2 pivot
  697: *                 block D in the following way to reduce the number
  698: *                 of FLOPS when we myltiply panel ( W(k) W(k+1) ) by
  699: *                 this inverse
  700: *
  701: *                 D**(-1) = ( d11 d21 )**(-1) =
  702: *                           ( d21 d22 )
  703: *
  704: *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
  705: *                                        ( (-d21 ) ( d11 ) )
  706: *
  707: *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
  708: *
  709: *                   * ( ( d22/d21 ) (      -1 ) ) =
  710: *                     ( (      -1 ) ( d11/d21 ) )
  711: *
  712: *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
  713: *                                           ( ( -1  ) ( D22 ) )
  714: *
  715: *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
  716: *                               ( (  -1 ) ( D22 ) )
  717: *
  718: *                 = D21 * ( ( D11 ) (  -1 ) )
  719: *                         ( (  -1 ) ( D22 ) )
  720: *
  721:                   D21 = W( K+1, K )
  722:                   D11 = W( K+1, K+1 ) / D21
  723:                   D22 = W( K, K ) / D21
  724:                   T = ONE / ( D11*D22-ONE )
  725:                   D21 = T / D21
  726: *
  727: *                 Update elements in columns A(k) and A(k+1) as
  728: *                 dot products of rows of ( W(k) W(k+1) ) and columns
  729: *                 of D**(-1)
  730: *
  731:                   DO 80 J = K + 2, N
  732:                      A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) )
  733:                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
  734:    80             CONTINUE
  735:                END IF
  736: *
  737: *              Copy D(k) to A
  738: *
  739:                A( K, K ) = W( K, K )
  740:                A( K+1, K ) = W( K+1, K )
  741:                A( K+1, K+1 ) = W( K+1, K+1 )
  742: *
  743:             END IF
  744: *
  745:          END IF
  746: *
  747: *        Store details of the interchanges in IPIV
  748: *
  749:          IF( KSTEP.EQ.1 ) THEN
  750:             IPIV( K ) = KP
  751:          ELSE
  752:             IPIV( K ) = -KP
  753:             IPIV( K+1 ) = -KP
  754:          END IF
  755: *
  756: *        Increase K and return to the start of the main loop
  757: *
  758:          K = K + KSTEP
  759:          GO TO 70
  760: *
  761:    90    CONTINUE
  762: *
  763: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
  764: *
  765: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
  766: *
  767: *        computing blocks of NB columns at a time
  768: *
  769:          DO 110 J = K, N, NB
  770:             JB = MIN( NB, N-J+1 )
  771: *
  772: *           Update the lower triangle of the diagonal block
  773: *
  774:             DO 100 JJ = J, J + JB - 1
  775:                CALL DGEMV( 'No transpose', J+JB-JJ, K-1, -ONE,
  776:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, ONE,
  777:      $                     A( JJ, JJ ), 1 )
  778:   100       CONTINUE
  779: *
  780: *           Update the rectangular subdiagonal block
  781: *
  782:             IF( J+JB.LE.N )
  783:      $         CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  784:      $                     K-1, -ONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
  785:      $                     ONE, A( J+JB, J ), LDA )
  786:   110    CONTINUE
  787: *
  788: *        Put L21 in standard form by partially undoing the interchanges
  789: *        of rows in columns 1:k-1 looping backwards from k-1 to 1
  790: *
  791:          J = K - 1
  792:   120    CONTINUE
  793: *
  794: *           Undo the interchanges (if any) of rows JJ and JP at each
  795: *           step J
  796: *
  797: *           (Here, J is a diagonal index)
  798:             JJ = J
  799:             JP = IPIV( J )
  800:             IF( JP.LT.0 ) THEN
  801:                JP = -JP
  802: *              (Here, J is a diagonal index)
  803:                J = J - 1
  804:             END IF
  805: *           (NOTE: Here, J is used to determine row length. Length J
  806: *           of the rows to swap back doesn't include diagonal element)
  807:             J = J - 1
  808:             IF( JP.NE.JJ .AND. J.GE.1 )
  809:      $         CALL DSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
  810:          IF( J.GT.1 )
  811:      $      GO TO 120
  812: *
  813: *        Set KB to the number of columns factorized
  814: *
  815:          KB = K - 1
  816: *
  817:       END IF
  818:       RETURN
  819: *
  820: *     End of DLASYF
  821: *
  822:       END

CVSweb interface <joel.bertrand@systella.fr>