Annotation of rpl/lapack/lapack/dlasyf.f, revision 1.16

1.14      bertrand    1: *> \brief \b DLASYF computes a partial factorization of a real symmetric matrix using the Bunch-Kaufman diagonal pivoting method.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download DLASYF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf.f">
1.9       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
1.14      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       DOUBLE PRECISION   A( LDA, * ), W( LDW, * )
                     30: *       ..
1.14      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DLASYF computes a partial factorization of a real symmetric matrix A
                     39: *> using the Bunch-Kaufman diagonal pivoting method. The partial
                     40: *> factorization has the form:
                     41: *>
                     42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                     43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
                     44: *>
                     45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
                     46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
                     47: *>
                     48: *> where the order of D is at most NB. The actual order is returned in
                     49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
                     50: *>
                     51: *> DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code
                     52: *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
                     53: *> A22 (if UPLO = 'L').
                     54: *> \endverbatim
                     55: *
                     56: *  Arguments:
                     57: *  ==========
                     58: *
                     59: *> \param[in] UPLO
                     60: *> \verbatim
                     61: *>          UPLO is CHARACTER*1
                     62: *>          Specifies whether the upper or lower triangular part of the
                     63: *>          symmetric matrix A is stored:
                     64: *>          = 'U':  Upper triangular
                     65: *>          = 'L':  Lower triangular
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] N
                     69: *> \verbatim
                     70: *>          N is INTEGER
                     71: *>          The order of the matrix A.  N >= 0.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] NB
                     75: *> \verbatim
                     76: *>          NB is INTEGER
                     77: *>          The maximum number of columns of the matrix A that should be
                     78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     79: *>          blocks.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[out] KB
                     83: *> \verbatim
                     84: *>          KB is INTEGER
                     85: *>          The number of columns of A that were actually factored.
                     86: *>          KB is either NB-1 or NB, or N if N <= NB.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in,out] A
                     90: *> \verbatim
                     91: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     92: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     93: *>          n-by-n upper triangular part of A contains the upper
                     94: *>          triangular part of the matrix A, and the strictly lower
                     95: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     96: *>          leading n-by-n lower triangular part of A contains the lower
                     97: *>          triangular part of the matrix A, and the strictly upper
                     98: *>          triangular part of A is not referenced.
                     99: *>          On exit, A contains details of the partial factorization.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] LDA
                    103: *> \verbatim
                    104: *>          LDA is INTEGER
                    105: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[out] IPIV
                    109: *> \verbatim
                    110: *>          IPIV is INTEGER array, dimension (N)
                    111: *>          Details of the interchanges and the block structure of D.
                    112: *>
1.14      bertrand  113: *>          If UPLO = 'U':
                    114: *>             Only the last KB elements of IPIV are set.
                    115: *>
                    116: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                    117: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
                    118: *>
                    119: *>             If IPIV(k) = IPIV(k-1) < 0, then rows and columns
                    120: *>             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                    121: *>             is a 2-by-2 diagonal block.
                    122: *>
                    123: *>          If UPLO = 'L':
                    124: *>             Only the first KB elements of IPIV are set.
                    125: *>
                    126: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                    127: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
                    128: *>
                    129: *>             If IPIV(k) = IPIV(k+1) < 0, then rows and columns
                    130: *>             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
                    131: *>             is a 2-by-2 diagonal block.
1.9       bertrand  132: *> \endverbatim
                    133: *>
                    134: *> \param[out] W
                    135: *> \verbatim
                    136: *>          W is DOUBLE PRECISION array, dimension (LDW,NB)
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in] LDW
                    140: *> \verbatim
                    141: *>          LDW is INTEGER
                    142: *>          The leading dimension of the array W.  LDW >= max(1,N).
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[out] INFO
                    146: *> \verbatim
                    147: *>          INFO is INTEGER
                    148: *>          = 0: successful exit
                    149: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
                    150: *>               has been completed, but the block diagonal matrix D is
                    151: *>               exactly singular.
                    152: *> \endverbatim
                    153: *
                    154: *  Authors:
                    155: *  ========
                    156: *
1.14      bertrand  157: *> \author Univ. of Tennessee
                    158: *> \author Univ. of California Berkeley
                    159: *> \author Univ. of Colorado Denver
                    160: *> \author NAG Ltd.
1.9       bertrand  161: *
1.14      bertrand  162: *> \date November 2013
1.9       bertrand  163: *
                    164: *> \ingroup doubleSYcomputational
                    165: *
1.14      bertrand  166: *> \par Contributors:
                    167: *  ==================
                    168: *>
                    169: *> \verbatim
                    170: *>
                    171: *>  November 2013,  Igor Kozachenko,
                    172: *>                  Computer Science Division,
                    173: *>                  University of California, Berkeley
                    174: *> \endverbatim
                    175: *
1.9       bertrand  176: *  =====================================================================
1.1       bertrand  177:       SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
                    178: *
1.14      bertrand  179: *  -- LAPACK computational routine (version 3.5.0) --
1.1       bertrand  180: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    181: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.14      bertrand  182: *     November 2013
1.1       bertrand  183: *
                    184: *     .. Scalar Arguments ..
                    185:       CHARACTER          UPLO
                    186:       INTEGER            INFO, KB, LDA, LDW, N, NB
                    187: *     ..
                    188: *     .. Array Arguments ..
                    189:       INTEGER            IPIV( * )
                    190:       DOUBLE PRECISION   A( LDA, * ), W( LDW, * )
                    191: *     ..
                    192: *
                    193: *  =====================================================================
                    194: *
                    195: *     .. Parameters ..
                    196:       DOUBLE PRECISION   ZERO, ONE
                    197:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    198:       DOUBLE PRECISION   EIGHT, SEVTEN
                    199:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
                    200: *     ..
                    201: *     .. Local Scalars ..
                    202:       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
                    203:      $                   KSTEP, KW
                    204:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D21, D22, R1,
                    205:      $                   ROWMAX, T
                    206: *     ..
                    207: *     .. External Functions ..
                    208:       LOGICAL            LSAME
                    209:       INTEGER            IDAMAX
                    210:       EXTERNAL           LSAME, IDAMAX
                    211: *     ..
                    212: *     .. External Subroutines ..
                    213:       EXTERNAL           DCOPY, DGEMM, DGEMV, DSCAL, DSWAP
                    214: *     ..
                    215: *     .. Intrinsic Functions ..
                    216:       INTRINSIC          ABS, MAX, MIN, SQRT
                    217: *     ..
                    218: *     .. Executable Statements ..
                    219: *
                    220:       INFO = 0
                    221: *
                    222: *     Initialize ALPHA for use in choosing pivot block size.
                    223: *
                    224:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
                    225: *
                    226:       IF( LSAME( UPLO, 'U' ) ) THEN
                    227: *
                    228: *        Factorize the trailing columns of A using the upper triangle
                    229: *        of A and working backwards, and compute the matrix W = U12*D
                    230: *        for use in updating A11
                    231: *
                    232: *        K is the main loop index, decreasing from N in steps of 1 or 2
                    233: *
                    234: *        KW is the column of W which corresponds to column K of A
                    235: *
                    236:          K = N
                    237:    10    CONTINUE
                    238:          KW = NB + K - N
                    239: *
                    240: *        Exit from loop
                    241: *
                    242:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
                    243:      $      GO TO 30
                    244: *
                    245: *        Copy column K of A to column KW of W and update it
                    246: *
                    247:          CALL DCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
                    248:          IF( K.LT.N )
                    249:      $      CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ), LDA,
                    250:      $                  W( K, KW+1 ), LDW, ONE, W( 1, KW ), 1 )
                    251: *
                    252:          KSTEP = 1
                    253: *
                    254: *        Determine rows and columns to be interchanged and whether
                    255: *        a 1-by-1 or 2-by-2 pivot block will be used
                    256: *
                    257:          ABSAKK = ABS( W( K, KW ) )
                    258: *
                    259: *        IMAX is the row-index of the largest off-diagonal element in
1.14      bertrand  260: *        column K, and COLMAX is its absolute value.
                    261: *        Determine both COLMAX and IMAX.
1.1       bertrand  262: *
                    263:          IF( K.GT.1 ) THEN
                    264:             IMAX = IDAMAX( K-1, W( 1, KW ), 1 )
                    265:             COLMAX = ABS( W( IMAX, KW ) )
                    266:          ELSE
                    267:             COLMAX = ZERO
                    268:          END IF
                    269: *
                    270:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    271: *
1.14      bertrand  272: *           Column K is zero or underflow: set INFO and continue
1.1       bertrand  273: *
                    274:             IF( INFO.EQ.0 )
                    275:      $         INFO = K
                    276:             KP = K
                    277:          ELSE
                    278:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    279: *
                    280: *              no interchange, use 1-by-1 pivot block
                    281: *
                    282:                KP = K
                    283:             ELSE
                    284: *
                    285: *              Copy column IMAX to column KW-1 of W and update it
                    286: *
                    287:                CALL DCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
                    288:                CALL DCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
                    289:      $                     W( IMAX+1, KW-1 ), 1 )
                    290:                IF( K.LT.N )
                    291:      $            CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ),
                    292:      $                        LDA, W( IMAX, KW+1 ), LDW, ONE,
                    293:      $                        W( 1, KW-1 ), 1 )
                    294: *
                    295: *              JMAX is the column-index of the largest off-diagonal
                    296: *              element in row IMAX, and ROWMAX is its absolute value
                    297: *
                    298:                JMAX = IMAX + IDAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
                    299:                ROWMAX = ABS( W( JMAX, KW-1 ) )
                    300:                IF( IMAX.GT.1 ) THEN
                    301:                   JMAX = IDAMAX( IMAX-1, W( 1, KW-1 ), 1 )
                    302:                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, KW-1 ) ) )
                    303:                END IF
                    304: *
                    305:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    306: *
                    307: *                 no interchange, use 1-by-1 pivot block
                    308: *
                    309:                   KP = K
                    310:                ELSE IF( ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN
                    311: *
                    312: *                 interchange rows and columns K and IMAX, use 1-by-1
                    313: *                 pivot block
                    314: *
                    315:                   KP = IMAX
                    316: *
1.14      bertrand  317: *                 copy column KW-1 of W to column KW of W
1.1       bertrand  318: *
                    319:                   CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
                    320:                ELSE
                    321: *
                    322: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
                    323: *                 pivot block
                    324: *
                    325:                   KP = IMAX
                    326:                   KSTEP = 2
                    327:                END IF
                    328:             END IF
                    329: *
1.14      bertrand  330: *           ============================================================
                    331: *
                    332: *           KK is the column of A where pivoting step stopped
                    333: *
1.1       bertrand  334:             KK = K - KSTEP + 1
1.14      bertrand  335: *
                    336: *           KKW is the column of W which corresponds to column KK of A
                    337: *
1.1       bertrand  338:             KKW = NB + KK - N
                    339: *
1.14      bertrand  340: *           Interchange rows and columns KP and KK.
                    341: *           Updated column KP is already stored in column KKW of W.
1.1       bertrand  342: *
                    343:             IF( KP.NE.KK ) THEN
                    344: *
1.14      bertrand  345: *              Copy non-updated column KK to column KP of submatrix A
                    346: *              at step K. No need to copy element into column K
                    347: *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
                    348: *              will be later overwritten.
1.1       bertrand  349: *
1.14      bertrand  350:                A( KP, KP ) = A( KK, KK )
                    351:                CALL DCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
1.1       bertrand  352:      $                     LDA )
1.14      bertrand  353:                IF( KP.GT.1 )
                    354:      $            CALL DCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
1.1       bertrand  355: *
1.14      bertrand  356: *              Interchange rows KK and KP in last K+1 to N columns of A
                    357: *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
                    358: *              later overwritten). Interchange rows KK and KP
                    359: *              in last KKW to NB columns of W.
1.1       bertrand  360: *
1.14      bertrand  361:                IF( K.LT.N )
                    362:      $            CALL DSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
                    363:      $                        LDA )
1.1       bertrand  364:                CALL DSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
                    365:      $                     LDW )
                    366:             END IF
                    367: *
                    368:             IF( KSTEP.EQ.1 ) THEN
                    369: *
1.14      bertrand  370: *              1-by-1 pivot block D(k): column kw of W now holds
1.1       bertrand  371: *
1.14      bertrand  372: *              W(kw) = U(k)*D(k),
1.1       bertrand  373: *
                    374: *              where U(k) is the k-th column of U
                    375: *
1.14      bertrand  376: *              Store subdiag. elements of column U(k)
                    377: *              and 1-by-1 block D(k) in column k of A.
                    378: *              NOTE: Diagonal element U(k,k) is a UNIT element
                    379: *              and not stored.
                    380: *                 A(k,k) := D(k,k) = W(k,kw)
                    381: *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
1.1       bertrand  382: *
                    383:                CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
                    384:                R1 = ONE / A( K, K )
                    385:                CALL DSCAL( K-1, R1, A( 1, K ), 1 )
1.14      bertrand  386: *
1.1       bertrand  387:             ELSE
                    388: *
1.14      bertrand  389: *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
1.1       bertrand  390: *
1.14      bertrand  391: *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
1.1       bertrand  392: *
                    393: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
                    394: *              of U
                    395: *
1.14      bertrand  396: *              Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
                    397: *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
                    398: *              NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
                    399: *              block and not stored.
                    400: *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
                    401: *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
                    402: *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
                    403: *
1.1       bertrand  404:                IF( K.GT.2 ) THEN
                    405: *
1.14      bertrand  406: *                 Compose the columns of the inverse of 2-by-2 pivot
                    407: *                 block D in the following way to reduce the number
                    408: *                 of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by
                    409: *                 this inverse
                    410: *
                    411: *                 D**(-1) = ( d11 d21 )**(-1) =
                    412: *                           ( d21 d22 )
                    413: *
                    414: *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
                    415: *                                        ( (-d21 ) ( d11 ) )
                    416: *
                    417: *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
                    418: *
                    419: *                   * ( ( d22/d21 ) (      -1 ) ) =
                    420: *                     ( (      -1 ) ( d11/d21 ) )
                    421: *
                    422: *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
                    423: *                                           ( ( -1  ) ( D22 ) )
                    424: *
                    425: *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
                    426: *                               ( (  -1 ) ( D22 ) )
                    427: *
                    428: *                 = D21 * ( ( D11 ) (  -1 ) )
                    429: *                         ( (  -1 ) ( D22 ) )
1.1       bertrand  430: *
                    431:                   D21 = W( K-1, KW )
                    432:                   D11 = W( K, KW ) / D21
                    433:                   D22 = W( K-1, KW-1 ) / D21
                    434:                   T = ONE / ( D11*D22-ONE )
                    435:                   D21 = T / D21
1.14      bertrand  436: *
                    437: *                 Update elements in columns A(k-1) and A(k) as
                    438: *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
                    439: *                 of D**(-1)
                    440: *
1.1       bertrand  441:                   DO 20 J = 1, K - 2
                    442:                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
                    443:                      A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) )
                    444:    20             CONTINUE
                    445:                END IF
                    446: *
                    447: *              Copy D(k) to A
                    448: *
                    449:                A( K-1, K-1 ) = W( K-1, KW-1 )
                    450:                A( K-1, K ) = W( K-1, KW )
                    451:                A( K, K ) = W( K, KW )
1.14      bertrand  452: *
1.1       bertrand  453:             END IF
1.14      bertrand  454: *
1.1       bertrand  455:          END IF
                    456: *
                    457: *        Store details of the interchanges in IPIV
                    458: *
                    459:          IF( KSTEP.EQ.1 ) THEN
                    460:             IPIV( K ) = KP
                    461:          ELSE
                    462:             IPIV( K ) = -KP
                    463:             IPIV( K-1 ) = -KP
                    464:          END IF
                    465: *
                    466: *        Decrease K and return to the start of the main loop
                    467: *
                    468:          K = K - KSTEP
                    469:          GO TO 10
                    470: *
                    471:    30    CONTINUE
                    472: *
                    473: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
                    474: *
1.8       bertrand  475: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
1.1       bertrand  476: *
                    477: *        computing blocks of NB columns at a time
                    478: *
                    479:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
                    480:             JB = MIN( NB, K-J+1 )
                    481: *
                    482: *           Update the upper triangle of the diagonal block
                    483: *
                    484:             DO 40 JJ = J, J + JB - 1
                    485:                CALL DGEMV( 'No transpose', JJ-J+1, N-K, -ONE,
                    486:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, ONE,
                    487:      $                     A( J, JJ ), 1 )
                    488:    40       CONTINUE
                    489: *
                    490: *           Update the rectangular superdiagonal block
                    491: *
                    492:             CALL DGEMM( 'No transpose', 'Transpose', J-1, JB, N-K, -ONE,
                    493:      $                  A( 1, K+1 ), LDA, W( J, KW+1 ), LDW, ONE,
                    494:      $                  A( 1, J ), LDA )
                    495:    50    CONTINUE
                    496: *
                    497: *        Put U12 in standard form by partially undoing the interchanges
1.14      bertrand  498: *        in columns k+1:n looping backwards from k+1 to n
1.1       bertrand  499: *
                    500:          J = K + 1
                    501:    60    CONTINUE
1.14      bertrand  502: *
                    503: *           Undo the interchanges (if any) of rows JJ and JP at each
                    504: *           step J
                    505: *
                    506: *           (Here, J is a diagonal index)
                    507:             JJ = J
                    508:             JP = IPIV( J )
                    509:             IF( JP.LT.0 ) THEN
                    510:                JP = -JP
                    511: *              (Here, J is a diagonal index)
                    512:                J = J + 1
                    513:             END IF
                    514: *           (NOTE: Here, J is used to determine row length. Length N-J+1
                    515: *           of the rows to swap back doesn't include diagonal element)
1.1       bertrand  516:             J = J + 1
1.14      bertrand  517:             IF( JP.NE.JJ .AND. J.LE.N )
                    518:      $         CALL DSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
                    519:          IF( J.LT.N )
1.1       bertrand  520:      $      GO TO 60
                    521: *
                    522: *        Set KB to the number of columns factorized
                    523: *
                    524:          KB = N - K
                    525: *
                    526:       ELSE
                    527: *
                    528: *        Factorize the leading columns of A using the lower triangle
                    529: *        of A and working forwards, and compute the matrix W = L21*D
                    530: *        for use in updating A22
                    531: *
                    532: *        K is the main loop index, increasing from 1 in steps of 1 or 2
                    533: *
                    534:          K = 1
                    535:    70    CONTINUE
                    536: *
                    537: *        Exit from loop
                    538: *
                    539:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
                    540:      $      GO TO 90
                    541: *
                    542: *        Copy column K of A to column K of W and update it
                    543: *
                    544:          CALL DCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
                    545:          CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ), LDA,
                    546:      $               W( K, 1 ), LDW, ONE, W( K, K ), 1 )
                    547: *
                    548:          KSTEP = 1
                    549: *
                    550: *        Determine rows and columns to be interchanged and whether
                    551: *        a 1-by-1 or 2-by-2 pivot block will be used
                    552: *
                    553:          ABSAKK = ABS( W( K, K ) )
                    554: *
                    555: *        IMAX is the row-index of the largest off-diagonal element in
1.14      bertrand  556: *        column K, and COLMAX is its absolute value.
                    557: *        Determine both COLMAX and IMAX.
1.1       bertrand  558: *
                    559:          IF( K.LT.N ) THEN
                    560:             IMAX = K + IDAMAX( N-K, W( K+1, K ), 1 )
                    561:             COLMAX = ABS( W( IMAX, K ) )
                    562:          ELSE
                    563:             COLMAX = ZERO
                    564:          END IF
                    565: *
                    566:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    567: *
1.14      bertrand  568: *           Column K is zero or underflow: set INFO and continue
1.1       bertrand  569: *
                    570:             IF( INFO.EQ.0 )
                    571:      $         INFO = K
                    572:             KP = K
                    573:          ELSE
                    574:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    575: *
                    576: *              no interchange, use 1-by-1 pivot block
                    577: *
                    578:                KP = K
                    579:             ELSE
                    580: *
                    581: *              Copy column IMAX to column K+1 of W and update it
                    582: *
                    583:                CALL DCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
                    584:                CALL DCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, K+1 ),
                    585:      $                     1 )
                    586:                CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ),
                    587:      $                     LDA, W( IMAX, 1 ), LDW, ONE, W( K, K+1 ), 1 )
                    588: *
                    589: *              JMAX is the column-index of the largest off-diagonal
                    590: *              element in row IMAX, and ROWMAX is its absolute value
                    591: *
                    592:                JMAX = K - 1 + IDAMAX( IMAX-K, W( K, K+1 ), 1 )
                    593:                ROWMAX = ABS( W( JMAX, K+1 ) )
                    594:                IF( IMAX.LT.N ) THEN
                    595:                   JMAX = IMAX + IDAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
                    596:                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, K+1 ) ) )
                    597:                END IF
                    598: *
                    599:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    600: *
                    601: *                 no interchange, use 1-by-1 pivot block
                    602: *
                    603:                   KP = K
                    604:                ELSE IF( ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN
                    605: *
                    606: *                 interchange rows and columns K and IMAX, use 1-by-1
                    607: *                 pivot block
                    608: *
                    609:                   KP = IMAX
                    610: *
1.14      bertrand  611: *                 copy column K+1 of W to column K of W
1.1       bertrand  612: *
                    613:                   CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
                    614:                ELSE
                    615: *
                    616: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
                    617: *                 pivot block
                    618: *
                    619:                   KP = IMAX
                    620:                   KSTEP = 2
                    621:                END IF
                    622:             END IF
                    623: *
1.14      bertrand  624: *           ============================================================
                    625: *
                    626: *           KK is the column of A where pivoting step stopped
                    627: *
1.1       bertrand  628:             KK = K + KSTEP - 1
                    629: *
1.14      bertrand  630: *           Interchange rows and columns KP and KK.
                    631: *           Updated column KP is already stored in column KK of W.
1.1       bertrand  632: *
                    633:             IF( KP.NE.KK ) THEN
                    634: *
1.14      bertrand  635: *              Copy non-updated column KK to column KP of submatrix A
                    636: *              at step K. No need to copy element into column K
                    637: *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
                    638: *              will be later overwritten.
1.1       bertrand  639: *
1.14      bertrand  640:                A( KP, KP ) = A( KK, KK )
                    641:                CALL DCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
                    642:      $                     LDA )
                    643:                IF( KP.LT.N )
                    644:      $            CALL DCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
1.1       bertrand  645: *
1.14      bertrand  646: *              Interchange rows KK and KP in first K-1 columns of A
                    647: *              (columns K (or K and K+1 for 2-by-2 pivot) of A will be
                    648: *              later overwritten). Interchange rows KK and KP
                    649: *              in first KK columns of W.
1.1       bertrand  650: *
1.14      bertrand  651:                IF( K.GT.1 )
                    652:      $            CALL DSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
1.1       bertrand  653:                CALL DSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
                    654:             END IF
                    655: *
                    656:             IF( KSTEP.EQ.1 ) THEN
                    657: *
                    658: *              1-by-1 pivot block D(k): column k of W now holds
                    659: *
1.14      bertrand  660: *              W(k) = L(k)*D(k),
1.1       bertrand  661: *
                    662: *              where L(k) is the k-th column of L
                    663: *
1.14      bertrand  664: *              Store subdiag. elements of column L(k)
                    665: *              and 1-by-1 block D(k) in column k of A.
                    666: *              (NOTE: Diagonal element L(k,k) is a UNIT element
                    667: *              and not stored)
                    668: *                 A(k,k) := D(k,k) = W(k,k)
                    669: *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
1.1       bertrand  670: *
                    671:                CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
                    672:                IF( K.LT.N ) THEN
                    673:                   R1 = ONE / A( K, K )
                    674:                   CALL DSCAL( N-K, R1, A( K+1, K ), 1 )
                    675:                END IF
1.14      bertrand  676: *
1.1       bertrand  677:             ELSE
                    678: *
                    679: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
                    680: *
                    681: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
                    682: *
                    683: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
                    684: *              of L
                    685: *
1.14      bertrand  686: *              Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
                    687: *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
                    688: *              (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
                    689: *              block and not stored)
                    690: *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
                    691: *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
                    692: *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
                    693: *
1.1       bertrand  694:                IF( K.LT.N-1 ) THEN
                    695: *
1.14      bertrand  696: *                 Compose the columns of the inverse of 2-by-2 pivot
                    697: *                 block D in the following way to reduce the number
                    698: *                 of FLOPS when we myltiply panel ( W(k) W(k+1) ) by
                    699: *                 this inverse
                    700: *
                    701: *                 D**(-1) = ( d11 d21 )**(-1) =
                    702: *                           ( d21 d22 )
                    703: *
                    704: *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
                    705: *                                        ( (-d21 ) ( d11 ) )
                    706: *
                    707: *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
                    708: *
                    709: *                   * ( ( d22/d21 ) (      -1 ) ) =
                    710: *                     ( (      -1 ) ( d11/d21 ) )
                    711: *
                    712: *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
                    713: *                                           ( ( -1  ) ( D22 ) )
                    714: *
                    715: *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
                    716: *                               ( (  -1 ) ( D22 ) )
                    717: *
                    718: *                 = D21 * ( ( D11 ) (  -1 ) )
                    719: *                         ( (  -1 ) ( D22 ) )
1.1       bertrand  720: *
                    721:                   D21 = W( K+1, K )
                    722:                   D11 = W( K+1, K+1 ) / D21
                    723:                   D22 = W( K, K ) / D21
                    724:                   T = ONE / ( D11*D22-ONE )
                    725:                   D21 = T / D21
1.14      bertrand  726: *
                    727: *                 Update elements in columns A(k) and A(k+1) as
                    728: *                 dot products of rows of ( W(k) W(k+1) ) and columns
                    729: *                 of D**(-1)
                    730: *
1.1       bertrand  731:                   DO 80 J = K + 2, N
                    732:                      A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) )
                    733:                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
                    734:    80             CONTINUE
                    735:                END IF
                    736: *
                    737: *              Copy D(k) to A
                    738: *
                    739:                A( K, K ) = W( K, K )
                    740:                A( K+1, K ) = W( K+1, K )
                    741:                A( K+1, K+1 ) = W( K+1, K+1 )
1.14      bertrand  742: *
1.1       bertrand  743:             END IF
1.14      bertrand  744: *
1.1       bertrand  745:          END IF
                    746: *
                    747: *        Store details of the interchanges in IPIV
                    748: *
                    749:          IF( KSTEP.EQ.1 ) THEN
                    750:             IPIV( K ) = KP
                    751:          ELSE
                    752:             IPIV( K ) = -KP
                    753:             IPIV( K+1 ) = -KP
                    754:          END IF
                    755: *
                    756: *        Increase K and return to the start of the main loop
                    757: *
                    758:          K = K + KSTEP
                    759:          GO TO 70
                    760: *
                    761:    90    CONTINUE
                    762: *
                    763: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
                    764: *
1.8       bertrand  765: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
1.1       bertrand  766: *
                    767: *        computing blocks of NB columns at a time
                    768: *
                    769:          DO 110 J = K, N, NB
                    770:             JB = MIN( NB, N-J+1 )
                    771: *
                    772: *           Update the lower triangle of the diagonal block
                    773: *
                    774:             DO 100 JJ = J, J + JB - 1
                    775:                CALL DGEMV( 'No transpose', J+JB-JJ, K-1, -ONE,
                    776:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, ONE,
                    777:      $                     A( JJ, JJ ), 1 )
                    778:   100       CONTINUE
                    779: *
                    780: *           Update the rectangular subdiagonal block
                    781: *
                    782:             IF( J+JB.LE.N )
                    783:      $         CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
                    784:      $                     K-1, -ONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
                    785:      $                     ONE, A( J+JB, J ), LDA )
                    786:   110    CONTINUE
                    787: *
                    788: *        Put L21 in standard form by partially undoing the interchanges
1.14      bertrand  789: *        of rows in columns 1:k-1 looping backwards from k-1 to 1
1.1       bertrand  790: *
                    791:          J = K - 1
                    792:   120    CONTINUE
1.14      bertrand  793: *
                    794: *           Undo the interchanges (if any) of rows JJ and JP at each
                    795: *           step J
                    796: *
                    797: *           (Here, J is a diagonal index)
                    798:             JJ = J
                    799:             JP = IPIV( J )
                    800:             IF( JP.LT.0 ) THEN
                    801:                JP = -JP
                    802: *              (Here, J is a diagonal index)
                    803:                J = J - 1
                    804:             END IF
                    805: *           (NOTE: Here, J is used to determine row length. Length J
                    806: *           of the rows to swap back doesn't include diagonal element)
1.1       bertrand  807:             J = J - 1
1.14      bertrand  808:             IF( JP.NE.JJ .AND. J.GE.1 )
                    809:      $         CALL DSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
                    810:          IF( J.GT.1 )
1.1       bertrand  811:      $      GO TO 120
                    812: *
                    813: *        Set KB to the number of columns factorized
                    814: *
                    815:          KB = K - 1
                    816: *
                    817:       END IF
                    818:       RETURN
                    819: *
                    820: *     End of DLASYF
                    821: *
                    822:       END

CVSweb interface <joel.bertrand@systella.fr>