Annotation of rpl/lapack/lapack/dlasyf.f, revision 1.11

1.9       bertrand    1: *> \brief \b DLASYF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLASYF + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       DOUBLE PRECISION   A( LDA, * ), W( LDW, * )
                     30: *       ..
                     31: *  
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DLASYF computes a partial factorization of a real symmetric matrix A
                     39: *> using the Bunch-Kaufman diagonal pivoting method. The partial
                     40: *> factorization has the form:
                     41: *>
                     42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                     43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
                     44: *>
                     45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
                     46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
                     47: *>
                     48: *> where the order of D is at most NB. The actual order is returned in
                     49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
                     50: *>
                     51: *> DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code
                     52: *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
                     53: *> A22 (if UPLO = 'L').
                     54: *> \endverbatim
                     55: *
                     56: *  Arguments:
                     57: *  ==========
                     58: *
                     59: *> \param[in] UPLO
                     60: *> \verbatim
                     61: *>          UPLO is CHARACTER*1
                     62: *>          Specifies whether the upper or lower triangular part of the
                     63: *>          symmetric matrix A is stored:
                     64: *>          = 'U':  Upper triangular
                     65: *>          = 'L':  Lower triangular
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] N
                     69: *> \verbatim
                     70: *>          N is INTEGER
                     71: *>          The order of the matrix A.  N >= 0.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] NB
                     75: *> \verbatim
                     76: *>          NB is INTEGER
                     77: *>          The maximum number of columns of the matrix A that should be
                     78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     79: *>          blocks.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[out] KB
                     83: *> \verbatim
                     84: *>          KB is INTEGER
                     85: *>          The number of columns of A that were actually factored.
                     86: *>          KB is either NB-1 or NB, or N if N <= NB.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in,out] A
                     90: *> \verbatim
                     91: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     92: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     93: *>          n-by-n upper triangular part of A contains the upper
                     94: *>          triangular part of the matrix A, and the strictly lower
                     95: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     96: *>          leading n-by-n lower triangular part of A contains the lower
                     97: *>          triangular part of the matrix A, and the strictly upper
                     98: *>          triangular part of A is not referenced.
                     99: *>          On exit, A contains details of the partial factorization.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] LDA
                    103: *> \verbatim
                    104: *>          LDA is INTEGER
                    105: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[out] IPIV
                    109: *> \verbatim
                    110: *>          IPIV is INTEGER array, dimension (N)
                    111: *>          Details of the interchanges and the block structure of D.
                    112: *>          If UPLO = 'U', only the last KB elements of IPIV are set;
                    113: *>          if UPLO = 'L', only the first KB elements are set.
                    114: *>
                    115: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                    116: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
                    117: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
                    118: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                    119: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
                    120: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
                    121: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[out] W
                    125: *> \verbatim
                    126: *>          W is DOUBLE PRECISION array, dimension (LDW,NB)
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] LDW
                    130: *> \verbatim
                    131: *>          LDW is INTEGER
                    132: *>          The leading dimension of the array W.  LDW >= max(1,N).
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[out] INFO
                    136: *> \verbatim
                    137: *>          INFO is INTEGER
                    138: *>          = 0: successful exit
                    139: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
                    140: *>               has been completed, but the block diagonal matrix D is
                    141: *>               exactly singular.
                    142: *> \endverbatim
                    143: *
                    144: *  Authors:
                    145: *  ========
                    146: *
                    147: *> \author Univ. of Tennessee 
                    148: *> \author Univ. of California Berkeley 
                    149: *> \author Univ. of Colorado Denver 
                    150: *> \author NAG Ltd. 
                    151: *
                    152: *> \date November 2011
                    153: *
                    154: *> \ingroup doubleSYcomputational
                    155: *
                    156: *  =====================================================================
1.1       bertrand  157:       SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
                    158: *
1.9       bertrand  159: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  160: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    161: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  162: *     November 2011
1.1       bertrand  163: *
                    164: *     .. Scalar Arguments ..
                    165:       CHARACTER          UPLO
                    166:       INTEGER            INFO, KB, LDA, LDW, N, NB
                    167: *     ..
                    168: *     .. Array Arguments ..
                    169:       INTEGER            IPIV( * )
                    170:       DOUBLE PRECISION   A( LDA, * ), W( LDW, * )
                    171: *     ..
                    172: *
                    173: *  =====================================================================
                    174: *
                    175: *     .. Parameters ..
                    176:       DOUBLE PRECISION   ZERO, ONE
                    177:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    178:       DOUBLE PRECISION   EIGHT, SEVTEN
                    179:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
                    180: *     ..
                    181: *     .. Local Scalars ..
                    182:       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
                    183:      $                   KSTEP, KW
                    184:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D21, D22, R1,
                    185:      $                   ROWMAX, T
                    186: *     ..
                    187: *     .. External Functions ..
                    188:       LOGICAL            LSAME
                    189:       INTEGER            IDAMAX
                    190:       EXTERNAL           LSAME, IDAMAX
                    191: *     ..
                    192: *     .. External Subroutines ..
                    193:       EXTERNAL           DCOPY, DGEMM, DGEMV, DSCAL, DSWAP
                    194: *     ..
                    195: *     .. Intrinsic Functions ..
                    196:       INTRINSIC          ABS, MAX, MIN, SQRT
                    197: *     ..
                    198: *     .. Executable Statements ..
                    199: *
                    200:       INFO = 0
                    201: *
                    202: *     Initialize ALPHA for use in choosing pivot block size.
                    203: *
                    204:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
                    205: *
                    206:       IF( LSAME( UPLO, 'U' ) ) THEN
                    207: *
                    208: *        Factorize the trailing columns of A using the upper triangle
                    209: *        of A and working backwards, and compute the matrix W = U12*D
                    210: *        for use in updating A11
                    211: *
                    212: *        K is the main loop index, decreasing from N in steps of 1 or 2
                    213: *
                    214: *        KW is the column of W which corresponds to column K of A
                    215: *
                    216:          K = N
                    217:    10    CONTINUE
                    218:          KW = NB + K - N
                    219: *
                    220: *        Exit from loop
                    221: *
                    222:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
                    223:      $      GO TO 30
                    224: *
                    225: *        Copy column K of A to column KW of W and update it
                    226: *
                    227:          CALL DCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
                    228:          IF( K.LT.N )
                    229:      $      CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ), LDA,
                    230:      $                  W( K, KW+1 ), LDW, ONE, W( 1, KW ), 1 )
                    231: *
                    232:          KSTEP = 1
                    233: *
                    234: *        Determine rows and columns to be interchanged and whether
                    235: *        a 1-by-1 or 2-by-2 pivot block will be used
                    236: *
                    237:          ABSAKK = ABS( W( K, KW ) )
                    238: *
                    239: *        IMAX is the row-index of the largest off-diagonal element in
                    240: *        column K, and COLMAX is its absolute value
                    241: *
                    242:          IF( K.GT.1 ) THEN
                    243:             IMAX = IDAMAX( K-1, W( 1, KW ), 1 )
                    244:             COLMAX = ABS( W( IMAX, KW ) )
                    245:          ELSE
                    246:             COLMAX = ZERO
                    247:          END IF
                    248: *
                    249:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    250: *
                    251: *           Column K is zero: set INFO and continue
                    252: *
                    253:             IF( INFO.EQ.0 )
                    254:      $         INFO = K
                    255:             KP = K
                    256:          ELSE
                    257:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    258: *
                    259: *              no interchange, use 1-by-1 pivot block
                    260: *
                    261:                KP = K
                    262:             ELSE
                    263: *
                    264: *              Copy column IMAX to column KW-1 of W and update it
                    265: *
                    266:                CALL DCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
                    267:                CALL DCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
                    268:      $                     W( IMAX+1, KW-1 ), 1 )
                    269:                IF( K.LT.N )
                    270:      $            CALL DGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ),
                    271:      $                        LDA, W( IMAX, KW+1 ), LDW, ONE,
                    272:      $                        W( 1, KW-1 ), 1 )
                    273: *
                    274: *              JMAX is the column-index of the largest off-diagonal
                    275: *              element in row IMAX, and ROWMAX is its absolute value
                    276: *
                    277:                JMAX = IMAX + IDAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
                    278:                ROWMAX = ABS( W( JMAX, KW-1 ) )
                    279:                IF( IMAX.GT.1 ) THEN
                    280:                   JMAX = IDAMAX( IMAX-1, W( 1, KW-1 ), 1 )
                    281:                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, KW-1 ) ) )
                    282:                END IF
                    283: *
                    284:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    285: *
                    286: *                 no interchange, use 1-by-1 pivot block
                    287: *
                    288:                   KP = K
                    289:                ELSE IF( ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN
                    290: *
                    291: *                 interchange rows and columns K and IMAX, use 1-by-1
                    292: *                 pivot block
                    293: *
                    294:                   KP = IMAX
                    295: *
                    296: *                 copy column KW-1 of W to column KW
                    297: *
                    298:                   CALL DCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
                    299:                ELSE
                    300: *
                    301: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
                    302: *                 pivot block
                    303: *
                    304:                   KP = IMAX
                    305:                   KSTEP = 2
                    306:                END IF
                    307:             END IF
                    308: *
                    309:             KK = K - KSTEP + 1
                    310:             KKW = NB + KK - N
                    311: *
                    312: *           Updated column KP is already stored in column KKW of W
                    313: *
                    314:             IF( KP.NE.KK ) THEN
                    315: *
                    316: *              Copy non-updated column KK to column KP
                    317: *
                    318:                A( KP, K ) = A( KK, K )
                    319:                CALL DCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
                    320:      $                     LDA )
                    321:                CALL DCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
                    322: *
                    323: *              Interchange rows KK and KP in last KK columns of A and W
                    324: *
                    325:                CALL DSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
                    326:                CALL DSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
                    327:      $                     LDW )
                    328:             END IF
                    329: *
                    330:             IF( KSTEP.EQ.1 ) THEN
                    331: *
                    332: *              1-by-1 pivot block D(k): column KW of W now holds
                    333: *
                    334: *              W(k) = U(k)*D(k)
                    335: *
                    336: *              where U(k) is the k-th column of U
                    337: *
                    338: *              Store U(k) in column k of A
                    339: *
                    340:                CALL DCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
                    341:                R1 = ONE / A( K, K )
                    342:                CALL DSCAL( K-1, R1, A( 1, K ), 1 )
                    343:             ELSE
                    344: *
                    345: *              2-by-2 pivot block D(k): columns KW and KW-1 of W now
                    346: *              hold
                    347: *
                    348: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
                    349: *
                    350: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
                    351: *              of U
                    352: *
                    353:                IF( K.GT.2 ) THEN
                    354: *
                    355: *                 Store U(k) and U(k-1) in columns k and k-1 of A
                    356: *
                    357:                   D21 = W( K-1, KW )
                    358:                   D11 = W( K, KW ) / D21
                    359:                   D22 = W( K-1, KW-1 ) / D21
                    360:                   T = ONE / ( D11*D22-ONE )
                    361:                   D21 = T / D21
                    362:                   DO 20 J = 1, K - 2
                    363:                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
                    364:                      A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) )
                    365:    20             CONTINUE
                    366:                END IF
                    367: *
                    368: *              Copy D(k) to A
                    369: *
                    370:                A( K-1, K-1 ) = W( K-1, KW-1 )
                    371:                A( K-1, K ) = W( K-1, KW )
                    372:                A( K, K ) = W( K, KW )
                    373:             END IF
                    374:          END IF
                    375: *
                    376: *        Store details of the interchanges in IPIV
                    377: *
                    378:          IF( KSTEP.EQ.1 ) THEN
                    379:             IPIV( K ) = KP
                    380:          ELSE
                    381:             IPIV( K ) = -KP
                    382:             IPIV( K-1 ) = -KP
                    383:          END IF
                    384: *
                    385: *        Decrease K and return to the start of the main loop
                    386: *
                    387:          K = K - KSTEP
                    388:          GO TO 10
                    389: *
                    390:    30    CONTINUE
                    391: *
                    392: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
                    393: *
1.8       bertrand  394: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
1.1       bertrand  395: *
                    396: *        computing blocks of NB columns at a time
                    397: *
                    398:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
                    399:             JB = MIN( NB, K-J+1 )
                    400: *
                    401: *           Update the upper triangle of the diagonal block
                    402: *
                    403:             DO 40 JJ = J, J + JB - 1
                    404:                CALL DGEMV( 'No transpose', JJ-J+1, N-K, -ONE,
                    405:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, ONE,
                    406:      $                     A( J, JJ ), 1 )
                    407:    40       CONTINUE
                    408: *
                    409: *           Update the rectangular superdiagonal block
                    410: *
                    411:             CALL DGEMM( 'No transpose', 'Transpose', J-1, JB, N-K, -ONE,
                    412:      $                  A( 1, K+1 ), LDA, W( J, KW+1 ), LDW, ONE,
                    413:      $                  A( 1, J ), LDA )
                    414:    50    CONTINUE
                    415: *
                    416: *        Put U12 in standard form by partially undoing the interchanges
                    417: *        in columns k+1:n
                    418: *
                    419:          J = K + 1
                    420:    60    CONTINUE
                    421:          JJ = J
                    422:          JP = IPIV( J )
                    423:          IF( JP.LT.0 ) THEN
                    424:             JP = -JP
                    425:             J = J + 1
                    426:          END IF
                    427:          J = J + 1
                    428:          IF( JP.NE.JJ .AND. J.LE.N )
                    429:      $      CALL DSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
                    430:          IF( J.LE.N )
                    431:      $      GO TO 60
                    432: *
                    433: *        Set KB to the number of columns factorized
                    434: *
                    435:          KB = N - K
                    436: *
                    437:       ELSE
                    438: *
                    439: *        Factorize the leading columns of A using the lower triangle
                    440: *        of A and working forwards, and compute the matrix W = L21*D
                    441: *        for use in updating A22
                    442: *
                    443: *        K is the main loop index, increasing from 1 in steps of 1 or 2
                    444: *
                    445:          K = 1
                    446:    70    CONTINUE
                    447: *
                    448: *        Exit from loop
                    449: *
                    450:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
                    451:      $      GO TO 90
                    452: *
                    453: *        Copy column K of A to column K of W and update it
                    454: *
                    455:          CALL DCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
                    456:          CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ), LDA,
                    457:      $               W( K, 1 ), LDW, ONE, W( K, K ), 1 )
                    458: *
                    459:          KSTEP = 1
                    460: *
                    461: *        Determine rows and columns to be interchanged and whether
                    462: *        a 1-by-1 or 2-by-2 pivot block will be used
                    463: *
                    464:          ABSAKK = ABS( W( K, K ) )
                    465: *
                    466: *        IMAX is the row-index of the largest off-diagonal element in
                    467: *        column K, and COLMAX is its absolute value
                    468: *
                    469:          IF( K.LT.N ) THEN
                    470:             IMAX = K + IDAMAX( N-K, W( K+1, K ), 1 )
                    471:             COLMAX = ABS( W( IMAX, K ) )
                    472:          ELSE
                    473:             COLMAX = ZERO
                    474:          END IF
                    475: *
                    476:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    477: *
                    478: *           Column K is zero: set INFO and continue
                    479: *
                    480:             IF( INFO.EQ.0 )
                    481:      $         INFO = K
                    482:             KP = K
                    483:          ELSE
                    484:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    485: *
                    486: *              no interchange, use 1-by-1 pivot block
                    487: *
                    488:                KP = K
                    489:             ELSE
                    490: *
                    491: *              Copy column IMAX to column K+1 of W and update it
                    492: *
                    493:                CALL DCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
                    494:                CALL DCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, K+1 ),
                    495:      $                     1 )
                    496:                CALL DGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ),
                    497:      $                     LDA, W( IMAX, 1 ), LDW, ONE, W( K, K+1 ), 1 )
                    498: *
                    499: *              JMAX is the column-index of the largest off-diagonal
                    500: *              element in row IMAX, and ROWMAX is its absolute value
                    501: *
                    502:                JMAX = K - 1 + IDAMAX( IMAX-K, W( K, K+1 ), 1 )
                    503:                ROWMAX = ABS( W( JMAX, K+1 ) )
                    504:                IF( IMAX.LT.N ) THEN
                    505:                   JMAX = IMAX + IDAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
                    506:                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, K+1 ) ) )
                    507:                END IF
                    508: *
                    509:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    510: *
                    511: *                 no interchange, use 1-by-1 pivot block
                    512: *
                    513:                   KP = K
                    514:                ELSE IF( ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN
                    515: *
                    516: *                 interchange rows and columns K and IMAX, use 1-by-1
                    517: *                 pivot block
                    518: *
                    519:                   KP = IMAX
                    520: *
                    521: *                 copy column K+1 of W to column K
                    522: *
                    523:                   CALL DCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
                    524:                ELSE
                    525: *
                    526: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
                    527: *                 pivot block
                    528: *
                    529:                   KP = IMAX
                    530:                   KSTEP = 2
                    531:                END IF
                    532:             END IF
                    533: *
                    534:             KK = K + KSTEP - 1
                    535: *
                    536: *           Updated column KP is already stored in column KK of W
                    537: *
                    538:             IF( KP.NE.KK ) THEN
                    539: *
                    540: *              Copy non-updated column KK to column KP
                    541: *
                    542:                A( KP, K ) = A( KK, K )
                    543:                CALL DCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
                    544:                CALL DCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
                    545: *
                    546: *              Interchange rows KK and KP in first KK columns of A and W
                    547: *
                    548:                CALL DSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
                    549:                CALL DSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
                    550:             END IF
                    551: *
                    552:             IF( KSTEP.EQ.1 ) THEN
                    553: *
                    554: *              1-by-1 pivot block D(k): column k of W now holds
                    555: *
                    556: *              W(k) = L(k)*D(k)
                    557: *
                    558: *              where L(k) is the k-th column of L
                    559: *
                    560: *              Store L(k) in column k of A
                    561: *
                    562:                CALL DCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
                    563:                IF( K.LT.N ) THEN
                    564:                   R1 = ONE / A( K, K )
                    565:                   CALL DSCAL( N-K, R1, A( K+1, K ), 1 )
                    566:                END IF
                    567:             ELSE
                    568: *
                    569: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
                    570: *
                    571: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
                    572: *
                    573: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
                    574: *              of L
                    575: *
                    576:                IF( K.LT.N-1 ) THEN
                    577: *
                    578: *                 Store L(k) and L(k+1) in columns k and k+1 of A
                    579: *
                    580:                   D21 = W( K+1, K )
                    581:                   D11 = W( K+1, K+1 ) / D21
                    582:                   D22 = W( K, K ) / D21
                    583:                   T = ONE / ( D11*D22-ONE )
                    584:                   D21 = T / D21
                    585:                   DO 80 J = K + 2, N
                    586:                      A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) )
                    587:                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
                    588:    80             CONTINUE
                    589:                END IF
                    590: *
                    591: *              Copy D(k) to A
                    592: *
                    593:                A( K, K ) = W( K, K )
                    594:                A( K+1, K ) = W( K+1, K )
                    595:                A( K+1, K+1 ) = W( K+1, K+1 )
                    596:             END IF
                    597:          END IF
                    598: *
                    599: *        Store details of the interchanges in IPIV
                    600: *
                    601:          IF( KSTEP.EQ.1 ) THEN
                    602:             IPIV( K ) = KP
                    603:          ELSE
                    604:             IPIV( K ) = -KP
                    605:             IPIV( K+1 ) = -KP
                    606:          END IF
                    607: *
                    608: *        Increase K and return to the start of the main loop
                    609: *
                    610:          K = K + KSTEP
                    611:          GO TO 70
                    612: *
                    613:    90    CONTINUE
                    614: *
                    615: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
                    616: *
1.8       bertrand  617: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
1.1       bertrand  618: *
                    619: *        computing blocks of NB columns at a time
                    620: *
                    621:          DO 110 J = K, N, NB
                    622:             JB = MIN( NB, N-J+1 )
                    623: *
                    624: *           Update the lower triangle of the diagonal block
                    625: *
                    626:             DO 100 JJ = J, J + JB - 1
                    627:                CALL DGEMV( 'No transpose', J+JB-JJ, K-1, -ONE,
                    628:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, ONE,
                    629:      $                     A( JJ, JJ ), 1 )
                    630:   100       CONTINUE
                    631: *
                    632: *           Update the rectangular subdiagonal block
                    633: *
                    634:             IF( J+JB.LE.N )
                    635:      $         CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
                    636:      $                     K-1, -ONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
                    637:      $                     ONE, A( J+JB, J ), LDA )
                    638:   110    CONTINUE
                    639: *
                    640: *        Put L21 in standard form by partially undoing the interchanges
                    641: *        in columns 1:k-1
                    642: *
                    643:          J = K - 1
                    644:   120    CONTINUE
                    645:          JJ = J
                    646:          JP = IPIV( J )
                    647:          IF( JP.LT.0 ) THEN
                    648:             JP = -JP
                    649:             J = J - 1
                    650:          END IF
                    651:          J = J - 1
                    652:          IF( JP.NE.JJ .AND. J.GE.1 )
                    653:      $      CALL DSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
                    654:          IF( J.GE.1 )
                    655:      $      GO TO 120
                    656: *
                    657: *        Set KB to the number of columns factorized
                    658: *
                    659:          KB = K - 1
                    660: *
                    661:       END IF
                    662:       RETURN
                    663: *
                    664: *     End of DLASYF
                    665: *
                    666:       END

CVSweb interface <joel.bertrand@systella.fr>