File:  [local] / rpl / lapack / lapack / dlasy2.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:53:57 2017 UTC (6 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b DLASY2 solves the Sylvester matrix equation where the matrices are of order 1 or 2.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLASY2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasy2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasy2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasy2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
   22: *                          LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       LOGICAL            LTRANL, LTRANR
   26: *       INTEGER            INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
   27: *       DOUBLE PRECISION   SCALE, XNORM
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
   31: *      $                   X( LDX, * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
   41: *>
   42: *>        op(TL)*X + ISGN*X*op(TR) = SCALE*B,
   43: *>
   44: *> where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
   45: *> -1.  op(T) = T or T**T, where T**T denotes the transpose of T.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] LTRANL
   52: *> \verbatim
   53: *>          LTRANL is LOGICAL
   54: *>          On entry, LTRANL specifies the op(TL):
   55: *>             = .FALSE., op(TL) = TL,
   56: *>             = .TRUE., op(TL) = TL**T.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] LTRANR
   60: *> \verbatim
   61: *>          LTRANR is LOGICAL
   62: *>          On entry, LTRANR specifies the op(TR):
   63: *>            = .FALSE., op(TR) = TR,
   64: *>            = .TRUE., op(TR) = TR**T.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] ISGN
   68: *> \verbatim
   69: *>          ISGN is INTEGER
   70: *>          On entry, ISGN specifies the sign of the equation
   71: *>          as described before. ISGN may only be 1 or -1.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N1
   75: *> \verbatim
   76: *>          N1 is INTEGER
   77: *>          On entry, N1 specifies the order of matrix TL.
   78: *>          N1 may only be 0, 1 or 2.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] N2
   82: *> \verbatim
   83: *>          N2 is INTEGER
   84: *>          On entry, N2 specifies the order of matrix TR.
   85: *>          N2 may only be 0, 1 or 2.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] TL
   89: *> \verbatim
   90: *>          TL is DOUBLE PRECISION array, dimension (LDTL,2)
   91: *>          On entry, TL contains an N1 by N1 matrix.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] LDTL
   95: *> \verbatim
   96: *>          LDTL is INTEGER
   97: *>          The leading dimension of the matrix TL. LDTL >= max(1,N1).
   98: *> \endverbatim
   99: *>
  100: *> \param[in] TR
  101: *> \verbatim
  102: *>          TR is DOUBLE PRECISION array, dimension (LDTR,2)
  103: *>          On entry, TR contains an N2 by N2 matrix.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] LDTR
  107: *> \verbatim
  108: *>          LDTR is INTEGER
  109: *>          The leading dimension of the matrix TR. LDTR >= max(1,N2).
  110: *> \endverbatim
  111: *>
  112: *> \param[in] B
  113: *> \verbatim
  114: *>          B is DOUBLE PRECISION array, dimension (LDB,2)
  115: *>          On entry, the N1 by N2 matrix B contains the right-hand
  116: *>          side of the equation.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] LDB
  120: *> \verbatim
  121: *>          LDB is INTEGER
  122: *>          The leading dimension of the matrix B. LDB >= max(1,N1).
  123: *> \endverbatim
  124: *>
  125: *> \param[out] SCALE
  126: *> \verbatim
  127: *>          SCALE is DOUBLE PRECISION
  128: *>          On exit, SCALE contains the scale factor. SCALE is chosen
  129: *>          less than or equal to 1 to prevent the solution overflowing.
  130: *> \endverbatim
  131: *>
  132: *> \param[out] X
  133: *> \verbatim
  134: *>          X is DOUBLE PRECISION array, dimension (LDX,2)
  135: *>          On exit, X contains the N1 by N2 solution.
  136: *> \endverbatim
  137: *>
  138: *> \param[in] LDX
  139: *> \verbatim
  140: *>          LDX is INTEGER
  141: *>          The leading dimension of the matrix X. LDX >= max(1,N1).
  142: *> \endverbatim
  143: *>
  144: *> \param[out] XNORM
  145: *> \verbatim
  146: *>          XNORM is DOUBLE PRECISION
  147: *>          On exit, XNORM is the infinity-norm of the solution.
  148: *> \endverbatim
  149: *>
  150: *> \param[out] INFO
  151: *> \verbatim
  152: *>          INFO is INTEGER
  153: *>          On exit, INFO is set to
  154: *>             0: successful exit.
  155: *>             1: TL and TR have too close eigenvalues, so TL or
  156: *>                TR is perturbed to get a nonsingular equation.
  157: *>          NOTE: In the interests of speed, this routine does not
  158: *>                check the inputs for errors.
  159: *> \endverbatim
  160: *
  161: *  Authors:
  162: *  ========
  163: *
  164: *> \author Univ. of Tennessee
  165: *> \author Univ. of California Berkeley
  166: *> \author Univ. of Colorado Denver
  167: *> \author NAG Ltd.
  168: *
  169: *> \date June 2016
  170: *
  171: *> \ingroup doubleSYauxiliary
  172: *
  173: *  =====================================================================
  174:       SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
  175:      $                   LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
  176: *
  177: *  -- LAPACK auxiliary routine (version 3.7.0) --
  178: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  179: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  180: *     June 2016
  181: *
  182: *     .. Scalar Arguments ..
  183:       LOGICAL            LTRANL, LTRANR
  184:       INTEGER            INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
  185:       DOUBLE PRECISION   SCALE, XNORM
  186: *     ..
  187: *     .. Array Arguments ..
  188:       DOUBLE PRECISION   B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
  189:      $                   X( LDX, * )
  190: *     ..
  191: *
  192: * =====================================================================
  193: *
  194: *     .. Parameters ..
  195:       DOUBLE PRECISION   ZERO, ONE
  196:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  197:       DOUBLE PRECISION   TWO, HALF, EIGHT
  198:       PARAMETER          ( TWO = 2.0D+0, HALF = 0.5D+0, EIGHT = 8.0D+0 )
  199: *     ..
  200: *     .. Local Scalars ..
  201:       LOGICAL            BSWAP, XSWAP
  202:       INTEGER            I, IP, IPIV, IPSV, J, JP, JPSV, K
  203:       DOUBLE PRECISION   BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1,
  204:      $                   TEMP, U11, U12, U22, XMAX
  205: *     ..
  206: *     .. Local Arrays ..
  207:       LOGICAL            BSWPIV( 4 ), XSWPIV( 4 )
  208:       INTEGER            JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ),
  209:      $                   LOCU22( 4 )
  210:       DOUBLE PRECISION   BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 )
  211: *     ..
  212: *     .. External Functions ..
  213:       INTEGER            IDAMAX
  214:       DOUBLE PRECISION   DLAMCH
  215:       EXTERNAL           IDAMAX, DLAMCH
  216: *     ..
  217: *     .. External Subroutines ..
  218:       EXTERNAL           DCOPY, DSWAP
  219: *     ..
  220: *     .. Intrinsic Functions ..
  221:       INTRINSIC          ABS, MAX
  222: *     ..
  223: *     .. Data statements ..
  224:       DATA               LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / ,
  225:      $                   LOCU22 / 4, 3, 2, 1 /
  226:       DATA               XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. /
  227:       DATA               BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. /
  228: *     ..
  229: *     .. Executable Statements ..
  230: *
  231: *     Do not check the input parameters for errors
  232: *
  233:       INFO = 0
  234: *
  235: *     Quick return if possible
  236: *
  237:       IF( N1.EQ.0 .OR. N2.EQ.0 )
  238:      $   RETURN
  239: *
  240: *     Set constants to control overflow
  241: *
  242:       EPS = DLAMCH( 'P' )
  243:       SMLNUM = DLAMCH( 'S' ) / EPS
  244:       SGN = ISGN
  245: *
  246:       K = N1 + N1 + N2 - 2
  247:       GO TO ( 10, 20, 30, 50 )K
  248: *
  249: *     1 by 1: TL11*X + SGN*X*TR11 = B11
  250: *
  251:    10 CONTINUE
  252:       TAU1 = TL( 1, 1 ) + SGN*TR( 1, 1 )
  253:       BET = ABS( TAU1 )
  254:       IF( BET.LE.SMLNUM ) THEN
  255:          TAU1 = SMLNUM
  256:          BET = SMLNUM
  257:          INFO = 1
  258:       END IF
  259: *
  260:       SCALE = ONE
  261:       GAM = ABS( B( 1, 1 ) )
  262:       IF( SMLNUM*GAM.GT.BET )
  263:      $   SCALE = ONE / GAM
  264: *
  265:       X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1
  266:       XNORM = ABS( X( 1, 1 ) )
  267:       RETURN
  268: *
  269: *     1 by 2:
  270: *     TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12]  = [B11 B12]
  271: *                                       [TR21 TR22]
  272: *
  273:    20 CONTINUE
  274: *
  275:       SMIN = MAX( EPS*MAX( ABS( TL( 1, 1 ) ), ABS( TR( 1, 1 ) ),
  276:      $       ABS( TR( 1, 2 ) ), ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) ),
  277:      $       SMLNUM )
  278:       TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
  279:       TMP( 4 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
  280:       IF( LTRANR ) THEN
  281:          TMP( 2 ) = SGN*TR( 2, 1 )
  282:          TMP( 3 ) = SGN*TR( 1, 2 )
  283:       ELSE
  284:          TMP( 2 ) = SGN*TR( 1, 2 )
  285:          TMP( 3 ) = SGN*TR( 2, 1 )
  286:       END IF
  287:       BTMP( 1 ) = B( 1, 1 )
  288:       BTMP( 2 ) = B( 1, 2 )
  289:       GO TO 40
  290: *
  291: *     2 by 1:
  292: *          op[TL11 TL12]*[X11] + ISGN* [X11]*TR11  = [B11]
  293: *            [TL21 TL22] [X21]         [X21]         [B21]
  294: *
  295:    30 CONTINUE
  296:       SMIN = MAX( EPS*MAX( ABS( TR( 1, 1 ) ), ABS( TL( 1, 1 ) ),
  297:      $       ABS( TL( 1, 2 ) ), ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) ),
  298:      $       SMLNUM )
  299:       TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
  300:       TMP( 4 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
  301:       IF( LTRANL ) THEN
  302:          TMP( 2 ) = TL( 1, 2 )
  303:          TMP( 3 ) = TL( 2, 1 )
  304:       ELSE
  305:          TMP( 2 ) = TL( 2, 1 )
  306:          TMP( 3 ) = TL( 1, 2 )
  307:       END IF
  308:       BTMP( 1 ) = B( 1, 1 )
  309:       BTMP( 2 ) = B( 2, 1 )
  310:    40 CONTINUE
  311: *
  312: *     Solve 2 by 2 system using complete pivoting.
  313: *     Set pivots less than SMIN to SMIN.
  314: *
  315:       IPIV = IDAMAX( 4, TMP, 1 )
  316:       U11 = TMP( IPIV )
  317:       IF( ABS( U11 ).LE.SMIN ) THEN
  318:          INFO = 1
  319:          U11 = SMIN
  320:       END IF
  321:       U12 = TMP( LOCU12( IPIV ) )
  322:       L21 = TMP( LOCL21( IPIV ) ) / U11
  323:       U22 = TMP( LOCU22( IPIV ) ) - U12*L21
  324:       XSWAP = XSWPIV( IPIV )
  325:       BSWAP = BSWPIV( IPIV )
  326:       IF( ABS( U22 ).LE.SMIN ) THEN
  327:          INFO = 1
  328:          U22 = SMIN
  329:       END IF
  330:       IF( BSWAP ) THEN
  331:          TEMP = BTMP( 2 )
  332:          BTMP( 2 ) = BTMP( 1 ) - L21*TEMP
  333:          BTMP( 1 ) = TEMP
  334:       ELSE
  335:          BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 )
  336:       END IF
  337:       SCALE = ONE
  338:       IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR.
  339:      $    ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN
  340:          SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) )
  341:          BTMP( 1 ) = BTMP( 1 )*SCALE
  342:          BTMP( 2 ) = BTMP( 2 )*SCALE
  343:       END IF
  344:       X2( 2 ) = BTMP( 2 ) / U22
  345:       X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 )
  346:       IF( XSWAP ) THEN
  347:          TEMP = X2( 2 )
  348:          X2( 2 ) = X2( 1 )
  349:          X2( 1 ) = TEMP
  350:       END IF
  351:       X( 1, 1 ) = X2( 1 )
  352:       IF( N1.EQ.1 ) THEN
  353:          X( 1, 2 ) = X2( 2 )
  354:          XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) )
  355:       ELSE
  356:          X( 2, 1 ) = X2( 2 )
  357:          XNORM = MAX( ABS( X( 1, 1 ) ), ABS( X( 2, 1 ) ) )
  358:       END IF
  359:       RETURN
  360: *
  361: *     2 by 2:
  362: *     op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12]
  363: *       [TL21 TL22] [X21 X22]        [X21 X22]   [TR21 TR22]   [B21 B22]
  364: *
  365: *     Solve equivalent 4 by 4 system using complete pivoting.
  366: *     Set pivots less than SMIN to SMIN.
  367: *
  368:    50 CONTINUE
  369:       SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
  370:      $       ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
  371:       SMIN = MAX( SMIN, ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
  372:      $       ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )
  373:       SMIN = MAX( EPS*SMIN, SMLNUM )
  374:       BTMP( 1 ) = ZERO
  375:       CALL DCOPY( 16, BTMP, 0, T16, 1 )
  376:       T16( 1, 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
  377:       T16( 2, 2 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
  378:       T16( 3, 3 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
  379:       T16( 4, 4 ) = TL( 2, 2 ) + SGN*TR( 2, 2 )
  380:       IF( LTRANL ) THEN
  381:          T16( 1, 2 ) = TL( 2, 1 )
  382:          T16( 2, 1 ) = TL( 1, 2 )
  383:          T16( 3, 4 ) = TL( 2, 1 )
  384:          T16( 4, 3 ) = TL( 1, 2 )
  385:       ELSE
  386:          T16( 1, 2 ) = TL( 1, 2 )
  387:          T16( 2, 1 ) = TL( 2, 1 )
  388:          T16( 3, 4 ) = TL( 1, 2 )
  389:          T16( 4, 3 ) = TL( 2, 1 )
  390:       END IF
  391:       IF( LTRANR ) THEN
  392:          T16( 1, 3 ) = SGN*TR( 1, 2 )
  393:          T16( 2, 4 ) = SGN*TR( 1, 2 )
  394:          T16( 3, 1 ) = SGN*TR( 2, 1 )
  395:          T16( 4, 2 ) = SGN*TR( 2, 1 )
  396:       ELSE
  397:          T16( 1, 3 ) = SGN*TR( 2, 1 )
  398:          T16( 2, 4 ) = SGN*TR( 2, 1 )
  399:          T16( 3, 1 ) = SGN*TR( 1, 2 )
  400:          T16( 4, 2 ) = SGN*TR( 1, 2 )
  401:       END IF
  402:       BTMP( 1 ) = B( 1, 1 )
  403:       BTMP( 2 ) = B( 2, 1 )
  404:       BTMP( 3 ) = B( 1, 2 )
  405:       BTMP( 4 ) = B( 2, 2 )
  406: *
  407: *     Perform elimination
  408: *
  409:       DO 100 I = 1, 3
  410:          XMAX = ZERO
  411:          DO 70 IP = I, 4
  412:             DO 60 JP = I, 4
  413:                IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN
  414:                   XMAX = ABS( T16( IP, JP ) )
  415:                   IPSV = IP
  416:                   JPSV = JP
  417:                END IF
  418:    60       CONTINUE
  419:    70    CONTINUE
  420:          IF( IPSV.NE.I ) THEN
  421:             CALL DSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 )
  422:             TEMP = BTMP( I )
  423:             BTMP( I ) = BTMP( IPSV )
  424:             BTMP( IPSV ) = TEMP
  425:          END IF
  426:          IF( JPSV.NE.I )
  427:      $      CALL DSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 )
  428:          JPIV( I ) = JPSV
  429:          IF( ABS( T16( I, I ) ).LT.SMIN ) THEN
  430:             INFO = 1
  431:             T16( I, I ) = SMIN
  432:          END IF
  433:          DO 90 J = I + 1, 4
  434:             T16( J, I ) = T16( J, I ) / T16( I, I )
  435:             BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I )
  436:             DO 80 K = I + 1, 4
  437:                T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K )
  438:    80       CONTINUE
  439:    90    CONTINUE
  440:   100 CONTINUE
  441:       IF( ABS( T16( 4, 4 ) ).LT.SMIN ) THEN
  442:          INFO = 1
  443:          T16( 4, 4 ) = SMIN
  444:       END IF
  445:       SCALE = ONE
  446:       IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR.
  447:      $    ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR.
  448:      $    ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR.
  449:      $    ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN
  450:          SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ),
  451:      $           ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ), ABS( BTMP( 4 ) ) )
  452:          BTMP( 1 ) = BTMP( 1 )*SCALE
  453:          BTMP( 2 ) = BTMP( 2 )*SCALE
  454:          BTMP( 3 ) = BTMP( 3 )*SCALE
  455:          BTMP( 4 ) = BTMP( 4 )*SCALE
  456:       END IF
  457:       DO 120 I = 1, 4
  458:          K = 5 - I
  459:          TEMP = ONE / T16( K, K )
  460:          TMP( K ) = BTMP( K )*TEMP
  461:          DO 110 J = K + 1, 4
  462:             TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J )
  463:   110    CONTINUE
  464:   120 CONTINUE
  465:       DO 130 I = 1, 3
  466:          IF( JPIV( 4-I ).NE.4-I ) THEN
  467:             TEMP = TMP( 4-I )
  468:             TMP( 4-I ) = TMP( JPIV( 4-I ) )
  469:             TMP( JPIV( 4-I ) ) = TEMP
  470:          END IF
  471:   130 CONTINUE
  472:       X( 1, 1 ) = TMP( 1 )
  473:       X( 2, 1 ) = TMP( 2 )
  474:       X( 1, 2 ) = TMP( 3 )
  475:       X( 2, 2 ) = TMP( 4 )
  476:       XNORM = MAX( ABS( TMP( 1 ) )+ABS( TMP( 3 ) ),
  477:      $        ABS( TMP( 2 ) )+ABS( TMP( 4 ) ) )
  478:       RETURN
  479: *
  480: *     End of DLASY2
  481: *
  482:       END

CVSweb interface <joel.bertrand@systella.fr>