File:  [local] / rpl / lapack / lapack / dlasy2.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
    2:      $                   LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
    3: *
    4: *  -- LAPACK auxiliary routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       LOGICAL            LTRANL, LTRANR
   11:       INTEGER            INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
   12:       DOUBLE PRECISION   SCALE, XNORM
   13: *     ..
   14: *     .. Array Arguments ..
   15:       DOUBLE PRECISION   B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
   16:      $                   X( LDX, * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
   23: *
   24: *         op(TL)*X + ISGN*X*op(TR) = SCALE*B,
   25: *
   26: *  where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
   27: *  -1.  op(T) = T or T', where T' denotes the transpose of T.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  LTRANL  (input) LOGICAL
   33: *          On entry, LTRANL specifies the op(TL):
   34: *             = .FALSE., op(TL) = TL,
   35: *             = .TRUE., op(TL) = TL'.
   36: *
   37: *  LTRANR  (input) LOGICAL
   38: *          On entry, LTRANR specifies the op(TR):
   39: *            = .FALSE., op(TR) = TR,
   40: *            = .TRUE., op(TR) = TR'.
   41: *
   42: *  ISGN    (input) INTEGER
   43: *          On entry, ISGN specifies the sign of the equation
   44: *          as described before. ISGN may only be 1 or -1.
   45: *
   46: *  N1      (input) INTEGER
   47: *          On entry, N1 specifies the order of matrix TL.
   48: *          N1 may only be 0, 1 or 2.
   49: *
   50: *  N2      (input) INTEGER
   51: *          On entry, N2 specifies the order of matrix TR.
   52: *          N2 may only be 0, 1 or 2.
   53: *
   54: *  TL      (input) DOUBLE PRECISION array, dimension (LDTL,2)
   55: *          On entry, TL contains an N1 by N1 matrix.
   56: *
   57: *  LDTL    (input) INTEGER
   58: *          The leading dimension of the matrix TL. LDTL >= max(1,N1).
   59: *
   60: *  TR      (input) DOUBLE PRECISION array, dimension (LDTR,2)
   61: *          On entry, TR contains an N2 by N2 matrix.
   62: *
   63: *  LDTR    (input) INTEGER
   64: *          The leading dimension of the matrix TR. LDTR >= max(1,N2).
   65: *
   66: *  B       (input) DOUBLE PRECISION array, dimension (LDB,2)
   67: *          On entry, the N1 by N2 matrix B contains the right-hand
   68: *          side of the equation.
   69: *
   70: *  LDB     (input) INTEGER
   71: *          The leading dimension of the matrix B. LDB >= max(1,N1).
   72: *
   73: *  SCALE   (output) DOUBLE PRECISION
   74: *          On exit, SCALE contains the scale factor. SCALE is chosen
   75: *          less than or equal to 1 to prevent the solution overflowing.
   76: *
   77: *  X       (output) DOUBLE PRECISION array, dimension (LDX,2)
   78: *          On exit, X contains the N1 by N2 solution.
   79: *
   80: *  LDX     (input) INTEGER
   81: *          The leading dimension of the matrix X. LDX >= max(1,N1).
   82: *
   83: *  XNORM   (output) DOUBLE PRECISION
   84: *          On exit, XNORM is the infinity-norm of the solution.
   85: *
   86: *  INFO    (output) INTEGER
   87: *          On exit, INFO is set to
   88: *             0: successful exit.
   89: *             1: TL and TR have too close eigenvalues, so TL or
   90: *                TR is perturbed to get a nonsingular equation.
   91: *          NOTE: In the interests of speed, this routine does not
   92: *                check the inputs for errors.
   93: *
   94: * =====================================================================
   95: *
   96: *     .. Parameters ..
   97:       DOUBLE PRECISION   ZERO, ONE
   98:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
   99:       DOUBLE PRECISION   TWO, HALF, EIGHT
  100:       PARAMETER          ( TWO = 2.0D+0, HALF = 0.5D+0, EIGHT = 8.0D+0 )
  101: *     ..
  102: *     .. Local Scalars ..
  103:       LOGICAL            BSWAP, XSWAP
  104:       INTEGER            I, IP, IPIV, IPSV, J, JP, JPSV, K
  105:       DOUBLE PRECISION   BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1,
  106:      $                   TEMP, U11, U12, U22, XMAX
  107: *     ..
  108: *     .. Local Arrays ..
  109:       LOGICAL            BSWPIV( 4 ), XSWPIV( 4 )
  110:       INTEGER            JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ),
  111:      $                   LOCU22( 4 )
  112:       DOUBLE PRECISION   BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 )
  113: *     ..
  114: *     .. External Functions ..
  115:       INTEGER            IDAMAX
  116:       DOUBLE PRECISION   DLAMCH
  117:       EXTERNAL           IDAMAX, DLAMCH
  118: *     ..
  119: *     .. External Subroutines ..
  120:       EXTERNAL           DCOPY, DSWAP
  121: *     ..
  122: *     .. Intrinsic Functions ..
  123:       INTRINSIC          ABS, MAX
  124: *     ..
  125: *     .. Data statements ..
  126:       DATA               LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / ,
  127:      $                   LOCU22 / 4, 3, 2, 1 /
  128:       DATA               XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. /
  129:       DATA               BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. /
  130: *     ..
  131: *     .. Executable Statements ..
  132: *
  133: *     Do not check the input parameters for errors
  134: *
  135:       INFO = 0
  136: *
  137: *     Quick return if possible
  138: *
  139:       IF( N1.EQ.0 .OR. N2.EQ.0 )
  140:      $   RETURN
  141: *
  142: *     Set constants to control overflow
  143: *
  144:       EPS = DLAMCH( 'P' )
  145:       SMLNUM = DLAMCH( 'S' ) / EPS
  146:       SGN = ISGN
  147: *
  148:       K = N1 + N1 + N2 - 2
  149:       GO TO ( 10, 20, 30, 50 )K
  150: *
  151: *     1 by 1: TL11*X + SGN*X*TR11 = B11
  152: *
  153:    10 CONTINUE
  154:       TAU1 = TL( 1, 1 ) + SGN*TR( 1, 1 )
  155:       BET = ABS( TAU1 )
  156:       IF( BET.LE.SMLNUM ) THEN
  157:          TAU1 = SMLNUM
  158:          BET = SMLNUM
  159:          INFO = 1
  160:       END IF
  161: *
  162:       SCALE = ONE
  163:       GAM = ABS( B( 1, 1 ) )
  164:       IF( SMLNUM*GAM.GT.BET )
  165:      $   SCALE = ONE / GAM
  166: *
  167:       X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1
  168:       XNORM = ABS( X( 1, 1 ) )
  169:       RETURN
  170: *
  171: *     1 by 2:
  172: *     TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12]  = [B11 B12]
  173: *                                       [TR21 TR22]
  174: *
  175:    20 CONTINUE
  176: *
  177:       SMIN = MAX( EPS*MAX( ABS( TL( 1, 1 ) ), ABS( TR( 1, 1 ) ),
  178:      $       ABS( TR( 1, 2 ) ), ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) ),
  179:      $       SMLNUM )
  180:       TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
  181:       TMP( 4 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
  182:       IF( LTRANR ) THEN
  183:          TMP( 2 ) = SGN*TR( 2, 1 )
  184:          TMP( 3 ) = SGN*TR( 1, 2 )
  185:       ELSE
  186:          TMP( 2 ) = SGN*TR( 1, 2 )
  187:          TMP( 3 ) = SGN*TR( 2, 1 )
  188:       END IF
  189:       BTMP( 1 ) = B( 1, 1 )
  190:       BTMP( 2 ) = B( 1, 2 )
  191:       GO TO 40
  192: *
  193: *     2 by 1:
  194: *          op[TL11 TL12]*[X11] + ISGN* [X11]*TR11  = [B11]
  195: *            [TL21 TL22] [X21]         [X21]         [B21]
  196: *
  197:    30 CONTINUE
  198:       SMIN = MAX( EPS*MAX( ABS( TR( 1, 1 ) ), ABS( TL( 1, 1 ) ),
  199:      $       ABS( TL( 1, 2 ) ), ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) ),
  200:      $       SMLNUM )
  201:       TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
  202:       TMP( 4 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
  203:       IF( LTRANL ) THEN
  204:          TMP( 2 ) = TL( 1, 2 )
  205:          TMP( 3 ) = TL( 2, 1 )
  206:       ELSE
  207:          TMP( 2 ) = TL( 2, 1 )
  208:          TMP( 3 ) = TL( 1, 2 )
  209:       END IF
  210:       BTMP( 1 ) = B( 1, 1 )
  211:       BTMP( 2 ) = B( 2, 1 )
  212:    40 CONTINUE
  213: *
  214: *     Solve 2 by 2 system using complete pivoting.
  215: *     Set pivots less than SMIN to SMIN.
  216: *
  217:       IPIV = IDAMAX( 4, TMP, 1 )
  218:       U11 = TMP( IPIV )
  219:       IF( ABS( U11 ).LE.SMIN ) THEN
  220:          INFO = 1
  221:          U11 = SMIN
  222:       END IF
  223:       U12 = TMP( LOCU12( IPIV ) )
  224:       L21 = TMP( LOCL21( IPIV ) ) / U11
  225:       U22 = TMP( LOCU22( IPIV ) ) - U12*L21
  226:       XSWAP = XSWPIV( IPIV )
  227:       BSWAP = BSWPIV( IPIV )
  228:       IF( ABS( U22 ).LE.SMIN ) THEN
  229:          INFO = 1
  230:          U22 = SMIN
  231:       END IF
  232:       IF( BSWAP ) THEN
  233:          TEMP = BTMP( 2 )
  234:          BTMP( 2 ) = BTMP( 1 ) - L21*TEMP
  235:          BTMP( 1 ) = TEMP
  236:       ELSE
  237:          BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 )
  238:       END IF
  239:       SCALE = ONE
  240:       IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR.
  241:      $    ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN
  242:          SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) )
  243:          BTMP( 1 ) = BTMP( 1 )*SCALE
  244:          BTMP( 2 ) = BTMP( 2 )*SCALE
  245:       END IF
  246:       X2( 2 ) = BTMP( 2 ) / U22
  247:       X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 )
  248:       IF( XSWAP ) THEN
  249:          TEMP = X2( 2 )
  250:          X2( 2 ) = X2( 1 )
  251:          X2( 1 ) = TEMP
  252:       END IF
  253:       X( 1, 1 ) = X2( 1 )
  254:       IF( N1.EQ.1 ) THEN
  255:          X( 1, 2 ) = X2( 2 )
  256:          XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) )
  257:       ELSE
  258:          X( 2, 1 ) = X2( 2 )
  259:          XNORM = MAX( ABS( X( 1, 1 ) ), ABS( X( 2, 1 ) ) )
  260:       END IF
  261:       RETURN
  262: *
  263: *     2 by 2:
  264: *     op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12]
  265: *       [TL21 TL22] [X21 X22]        [X21 X22]   [TR21 TR22]   [B21 B22]
  266: *
  267: *     Solve equivalent 4 by 4 system using complete pivoting.
  268: *     Set pivots less than SMIN to SMIN.
  269: *
  270:    50 CONTINUE
  271:       SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
  272:      $       ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
  273:       SMIN = MAX( SMIN, ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
  274:      $       ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )
  275:       SMIN = MAX( EPS*SMIN, SMLNUM )
  276:       BTMP( 1 ) = ZERO
  277:       CALL DCOPY( 16, BTMP, 0, T16, 1 )
  278:       T16( 1, 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
  279:       T16( 2, 2 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
  280:       T16( 3, 3 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
  281:       T16( 4, 4 ) = TL( 2, 2 ) + SGN*TR( 2, 2 )
  282:       IF( LTRANL ) THEN
  283:          T16( 1, 2 ) = TL( 2, 1 )
  284:          T16( 2, 1 ) = TL( 1, 2 )
  285:          T16( 3, 4 ) = TL( 2, 1 )
  286:          T16( 4, 3 ) = TL( 1, 2 )
  287:       ELSE
  288:          T16( 1, 2 ) = TL( 1, 2 )
  289:          T16( 2, 1 ) = TL( 2, 1 )
  290:          T16( 3, 4 ) = TL( 1, 2 )
  291:          T16( 4, 3 ) = TL( 2, 1 )
  292:       END IF
  293:       IF( LTRANR ) THEN
  294:          T16( 1, 3 ) = SGN*TR( 1, 2 )
  295:          T16( 2, 4 ) = SGN*TR( 1, 2 )
  296:          T16( 3, 1 ) = SGN*TR( 2, 1 )
  297:          T16( 4, 2 ) = SGN*TR( 2, 1 )
  298:       ELSE
  299:          T16( 1, 3 ) = SGN*TR( 2, 1 )
  300:          T16( 2, 4 ) = SGN*TR( 2, 1 )
  301:          T16( 3, 1 ) = SGN*TR( 1, 2 )
  302:          T16( 4, 2 ) = SGN*TR( 1, 2 )
  303:       END IF
  304:       BTMP( 1 ) = B( 1, 1 )
  305:       BTMP( 2 ) = B( 2, 1 )
  306:       BTMP( 3 ) = B( 1, 2 )
  307:       BTMP( 4 ) = B( 2, 2 )
  308: *
  309: *     Perform elimination
  310: *
  311:       DO 100 I = 1, 3
  312:          XMAX = ZERO
  313:          DO 70 IP = I, 4
  314:             DO 60 JP = I, 4
  315:                IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN
  316:                   XMAX = ABS( T16( IP, JP ) )
  317:                   IPSV = IP
  318:                   JPSV = JP
  319:                END IF
  320:    60       CONTINUE
  321:    70    CONTINUE
  322:          IF( IPSV.NE.I ) THEN
  323:             CALL DSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 )
  324:             TEMP = BTMP( I )
  325:             BTMP( I ) = BTMP( IPSV )
  326:             BTMP( IPSV ) = TEMP
  327:          END IF
  328:          IF( JPSV.NE.I )
  329:      $      CALL DSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 )
  330:          JPIV( I ) = JPSV
  331:          IF( ABS( T16( I, I ) ).LT.SMIN ) THEN
  332:             INFO = 1
  333:             T16( I, I ) = SMIN
  334:          END IF
  335:          DO 90 J = I + 1, 4
  336:             T16( J, I ) = T16( J, I ) / T16( I, I )
  337:             BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I )
  338:             DO 80 K = I + 1, 4
  339:                T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K )
  340:    80       CONTINUE
  341:    90    CONTINUE
  342:   100 CONTINUE
  343:       IF( ABS( T16( 4, 4 ) ).LT.SMIN )
  344:      $   T16( 4, 4 ) = SMIN
  345:       SCALE = ONE
  346:       IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR.
  347:      $    ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR.
  348:      $    ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR.
  349:      $    ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN
  350:          SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ),
  351:      $           ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ), ABS( BTMP( 4 ) ) )
  352:          BTMP( 1 ) = BTMP( 1 )*SCALE
  353:          BTMP( 2 ) = BTMP( 2 )*SCALE
  354:          BTMP( 3 ) = BTMP( 3 )*SCALE
  355:          BTMP( 4 ) = BTMP( 4 )*SCALE
  356:       END IF
  357:       DO 120 I = 1, 4
  358:          K = 5 - I
  359:          TEMP = ONE / T16( K, K )
  360:          TMP( K ) = BTMP( K )*TEMP
  361:          DO 110 J = K + 1, 4
  362:             TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J )
  363:   110    CONTINUE
  364:   120 CONTINUE
  365:       DO 130 I = 1, 3
  366:          IF( JPIV( 4-I ).NE.4-I ) THEN
  367:             TEMP = TMP( 4-I )
  368:             TMP( 4-I ) = TMP( JPIV( 4-I ) )
  369:             TMP( JPIV( 4-I ) ) = TEMP
  370:          END IF
  371:   130 CONTINUE
  372:       X( 1, 1 ) = TMP( 1 )
  373:       X( 2, 1 ) = TMP( 2 )
  374:       X( 1, 2 ) = TMP( 3 )
  375:       X( 2, 2 ) = TMP( 4 )
  376:       XNORM = MAX( ABS( TMP( 1 ) )+ABS( TMP( 3 ) ),
  377:      $        ABS( TMP( 2 ) )+ABS( TMP( 4 ) ) )
  378:       RETURN
  379: *
  380: *     End of DLASY2
  381: *
  382:       END

CVSweb interface <joel.bertrand@systella.fr>