File:  [local] / rpl / lapack / lapack / dlaswlq.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:59 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLASWLQ
    2: *
    3: *  Definition:
    4: *  ===========
    5: *
    6: *       SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK,
    7: *                            LWORK, INFO)
    8: *
    9: *       .. Scalar Arguments ..
   10: *       INTEGER           INFO, LDA, M, N, MB, NB, LDT, LWORK
   11: *       ..
   12: *       .. Array Arguments ..
   13: *       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
   14: *       ..
   15: *
   16: *
   17: *> \par Purpose:
   18: *  =============
   19: *>
   20: *> \verbatim
   21: *>
   22: *> DLASWLQ computes a blocked Tall-Skinny LQ factorization of
   23: *> a real M-by-N matrix A for M <= N:
   24: *>
   25: *>    A = ( L 0 ) *  Q,
   26: *>
   27: *> where:
   28: *>
   29: *>    Q is a n-by-N orthogonal matrix, stored on exit in an implicit
   30: *>    form in the elements above the diagonal of the array A and in
   31: *>    the elements of the array T;
   32: *>    L is a lower-triangular M-by-M matrix stored on exit in
   33: *>    the elements on and below the diagonal of the array A.
   34: *>    0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
   35: *>
   36: *> \endverbatim
   37: *
   38: *  Arguments:
   39: *  ==========
   40: *
   41: *> \param[in] M
   42: *> \verbatim
   43: *>          M is INTEGER
   44: *>          The number of rows of the matrix A.  M >= 0.
   45: *> \endverbatim
   46: *>
   47: *> \param[in] N
   48: *> \verbatim
   49: *>          N is INTEGER
   50: *>          The number of columns of the matrix A.  N >= M >= 0.
   51: *> \endverbatim
   52: *>
   53: *> \param[in] MB
   54: *> \verbatim
   55: *>          MB is INTEGER
   56: *>          The row block size to be used in the blocked QR.
   57: *>          M >= MB >= 1
   58: *> \endverbatim
   59: *> \param[in] NB
   60: *> \verbatim
   61: *>          NB is INTEGER
   62: *>          The column block size to be used in the blocked QR.
   63: *>          NB > 0.
   64: *> \endverbatim
   65: *>
   66: *> \param[in,out] A
   67: *> \verbatim
   68: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   69: *>          On entry, the M-by-N matrix A.
   70: *>          On exit, the elements on and below the diagonal
   71: *>          of the array contain the N-by-N lower triangular matrix L;
   72: *>          the elements above the diagonal represent Q by the rows
   73: *>          of blocked V (see Further Details).
   74: *>
   75: *> \endverbatim
   76: *>
   77: *> \param[in] LDA
   78: *> \verbatim
   79: *>          LDA is INTEGER
   80: *>          The leading dimension of the array A.  LDA >= max(1,M).
   81: *> \endverbatim
   82: *>
   83: *> \param[out] T
   84: *> \verbatim
   85: *>          T is DOUBLE PRECISION array,
   86: *>          dimension (LDT, N * Number_of_row_blocks)
   87: *>          where Number_of_row_blocks = CEIL((N-M)/(NB-M))
   88: *>          The blocked upper triangular block reflectors stored in compact form
   89: *>          as a sequence of upper triangular blocks.
   90: *>          See Further Details below.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] LDT
   94: *> \verbatim
   95: *>          LDT is INTEGER
   96: *>          The leading dimension of the array T.  LDT >= MB.
   97: *> \endverbatim
   98: *>
   99: *>
  100: *> \param[out] WORK
  101: *> \verbatim
  102: *>         (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  103: *>
  104: *> \endverbatim
  105: *> \param[in] LWORK
  106: *> \verbatim
  107: *>          The dimension of the array WORK.  LWORK >= MB*M.
  108: *>          If LWORK = -1, then a workspace query is assumed; the routine
  109: *>          only calculates the optimal size of the WORK array, returns
  110: *>          this value as the first entry of the WORK array, and no error
  111: *>          message related to LWORK is issued by XERBLA.
  112: *>
  113: *> \endverbatim
  114: *> \param[out] INFO
  115: *> \verbatim
  116: *>          INFO is INTEGER
  117: *>          = 0:  successful exit
  118: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  119: *> \endverbatim
  120: *
  121: *  Authors:
  122: *  ========
  123: *
  124: *> \author Univ. of Tennessee
  125: *> \author Univ. of California Berkeley
  126: *> \author Univ. of Colorado Denver
  127: *> \author NAG Ltd.
  128: *
  129: *> \par Further Details:
  130: *  =====================
  131: *>
  132: *> \verbatim
  133: *> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
  134: *> representing Q as a product of other orthogonal matrices
  135: *>   Q = Q(1) * Q(2) * . . . * Q(k)
  136: *> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
  137: *>   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
  138: *>   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
  139: *>   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
  140: *>   . . .
  141: *>
  142: *> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
  143: *> stored under the diagonal of rows 1:MB of A, and by upper triangular
  144: *> block reflectors, stored in array T(1:LDT,1:N).
  145: *> For more information see Further Details in GELQT.
  146: *>
  147: *> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
  148: *> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
  149: *> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
  150: *> The last Q(k) may use fewer rows.
  151: *> For more information see Further Details in TPQRT.
  152: *>
  153: *> For more details of the overall algorithm, see the description of
  154: *> Sequential TSQR in Section 2.2 of [1].
  155: *>
  156: *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
  157: *>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
  158: *>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
  159: *> \endverbatim
  160: *>
  161: *  =====================================================================
  162:       SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
  163:      $                  INFO)
  164: *
  165: *  -- LAPACK computational routine --
  166: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  167: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
  168: *
  169: *     .. Scalar Arguments ..
  170:       INTEGER           INFO, LDA, M, N, MB, NB, LWORK, LDT
  171: *     ..
  172: *     .. Array Arguments ..
  173:       DOUBLE PRECISION  A( LDA, * ), WORK( * ), T( LDT, *)
  174: *     ..
  175: *
  176: *  =====================================================================
  177: *
  178: *     ..
  179: *     .. Local Scalars ..
  180:       LOGICAL    LQUERY
  181:       INTEGER    I, II, KK, CTR
  182: *     ..
  183: *     .. EXTERNAL FUNCTIONS ..
  184:       LOGICAL            LSAME
  185:       EXTERNAL           LSAME
  186: *     .. EXTERNAL SUBROUTINES ..
  187:       EXTERNAL           DGELQT, DTPLQT, XERBLA
  188: *     .. INTRINSIC FUNCTIONS ..
  189:       INTRINSIC          MAX, MIN, MOD
  190: *     ..
  191: *     .. EXECUTABLE STATEMENTS ..
  192: *
  193: *     TEST THE INPUT ARGUMENTS
  194: *
  195:       INFO = 0
  196: *
  197:       LQUERY = ( LWORK.EQ.-1 )
  198: *
  199:       IF( M.LT.0 ) THEN
  200:         INFO = -1
  201:       ELSE IF( N.LT.0 .OR. N.LT.M ) THEN
  202:         INFO = -2
  203:       ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 )) THEN
  204:         INFO = -3
  205:       ELSE IF( NB.LT.0 ) THEN
  206:         INFO = -4
  207:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  208:         INFO = -6
  209:       ELSE IF( LDT.LT.MB ) THEN
  210:         INFO = -8
  211:       ELSE IF( ( LWORK.LT.M*MB) .AND. (.NOT.LQUERY) ) THEN
  212:         INFO = -10
  213:       END IF
  214:       IF( INFO.EQ.0)  THEN
  215:       WORK(1) = MB*M
  216:       END IF
  217: *
  218:       IF( INFO.NE.0 ) THEN
  219:         CALL XERBLA( 'DLASWLQ', -INFO )
  220:         RETURN
  221:       ELSE IF (LQUERY) THEN
  222:        RETURN
  223:       END IF
  224: *
  225: *     Quick return if possible
  226: *
  227:       IF( MIN(M,N).EQ.0 ) THEN
  228:           RETURN
  229:       END IF
  230: *
  231: *     The LQ Decomposition
  232: *
  233:        IF((M.GE.N).OR.(NB.LE.M).OR.(NB.GE.N)) THEN
  234:         CALL DGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO)
  235:         RETURN
  236:        END IF
  237: *
  238:        KK = MOD((N-M),(NB-M))
  239:        II=N-KK+1
  240: *
  241: *      Compute the LQ factorization of the first block A(1:M,1:NB)
  242: *
  243:        CALL DGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO)
  244:        CTR = 1
  245: *
  246:        DO I = NB+1, II-NB+M , (NB-M)
  247: *
  248: *      Compute the QR factorization of the current block A(1:M,I:I+NB-M)
  249: *
  250:          CALL DTPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ),
  251:      $                  LDA, T(1, CTR * M + 1),
  252:      $                  LDT, WORK, INFO )
  253:          CTR = CTR + 1
  254:        END DO
  255: *
  256: *     Compute the QR factorization of the last block A(1:M,II:N)
  257: *
  258:        IF (II.LE.N) THEN
  259:         CALL DTPLQT( M, KK, 0, MB, A(1,1), LDA, A( 1, II ),
  260:      $                  LDA, T(1, CTR * M + 1), LDT,
  261:      $                  WORK, INFO )
  262:        END IF
  263: *
  264:       WORK( 1 ) = M * MB
  265:       RETURN
  266: *
  267: *     End of DLASWLQ
  268: *
  269:       END

CVSweb interface <joel.bertrand@systella.fr>