Annotation of rpl/lapack/lapack/dlaswlq.f, revision 1.3
1.1 bertrand 1: *
2: * Definition:
3: * ===========
4: *
5: * SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK,
6: * LWORK, INFO)
7: *
8: * .. Scalar Arguments ..
9: * INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
10: * ..
11: * .. Array Arguments ..
12: * DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
13: * ..
14: *
15: *
16: *> \par Purpose:
17: * =============
18: *>
19: *> \verbatim
20: *>
21: *> DLASWLQ computes a blocked Short-Wide LQ factorization of a
22: *> M-by-N matrix A, where N >= M:
23: *> A = L * Q
24: *> \endverbatim
25: *
26: * Arguments:
27: * ==========
28: *
29: *> \param[in] M
30: *> \verbatim
31: *> M is INTEGER
32: *> The number of rows of the matrix A. M >= 0.
33: *> \endverbatim
34: *>
35: *> \param[in] N
36: *> \verbatim
37: *> N is INTEGER
38: *> The number of columns of the matrix A. N >= M >= 0.
39: *> \endverbatim
40: *>
41: *> \param[in] MB
42: *> \verbatim
43: *> MB is INTEGER
44: *> The row block size to be used in the blocked QR.
45: *> M >= MB >= 1
46: *> \endverbatim
47: *> \param[in] NB
48: *> \verbatim
49: *> NB is INTEGER
50: *> The column block size to be used in the blocked QR.
51: *> NB > M.
52: *> \endverbatim
53: *>
54: *> \param[in,out] A
55: *> \verbatim
56: *> A is DOUBLE PRECISION array, dimension (LDA,N)
57: *> On entry, the M-by-N matrix A.
1.3 ! bertrand 58: *> On exit, the elements on and below the diagonal
1.1 bertrand 59: *> of the array contain the N-by-N lower triangular matrix L;
60: *> the elements above the diagonal represent Q by the rows
61: *> of blocked V (see Further Details).
62: *>
63: *> \endverbatim
64: *>
65: *> \param[in] LDA
66: *> \verbatim
67: *> LDA is INTEGER
68: *> The leading dimension of the array A. LDA >= max(1,M).
69: *> \endverbatim
70: *>
71: *> \param[out] T
72: *> \verbatim
73: *> T is DOUBLE PRECISION array,
74: *> dimension (LDT, N * Number_of_row_blocks)
75: *> where Number_of_row_blocks = CEIL((N-M)/(NB-M))
76: *> The blocked upper triangular block reflectors stored in compact form
77: *> as a sequence of upper triangular blocks.
78: *> See Further Details below.
79: *> \endverbatim
80: *>
81: *> \param[in] LDT
82: *> \verbatim
83: *> LDT is INTEGER
84: *> The leading dimension of the array T. LDT >= MB.
85: *> \endverbatim
86: *>
87: *>
88: *> \param[out] WORK
89: *> \verbatim
90: *> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
91: *>
92: *> \endverbatim
93: *> \param[in] LWORK
94: *> \verbatim
95: *> The dimension of the array WORK. LWORK >= MB*M.
96: *> If LWORK = -1, then a workspace query is assumed; the routine
97: *> only calculates the optimal size of the WORK array, returns
98: *> this value as the first entry of the WORK array, and no error
99: *> message related to LWORK is issued by XERBLA.
100: *>
101: *> \endverbatim
102: *> \param[out] INFO
103: *> \verbatim
104: *> INFO is INTEGER
105: *> = 0: successful exit
106: *> < 0: if INFO = -i, the i-th argument had an illegal value
107: *> \endverbatim
108: *
109: * Authors:
110: * ========
111: *
112: *> \author Univ. of Tennessee
113: *> \author Univ. of California Berkeley
114: *> \author Univ. of Colorado Denver
115: *> \author NAG Ltd.
116: *
117: *> \par Further Details:
118: * =====================
119: *>
120: *> \verbatim
121: *> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
122: *> representing Q as a product of other orthogonal matrices
123: *> Q = Q(1) * Q(2) * . . . * Q(k)
124: *> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
125: *> Q(1) zeros out the upper diagonal entries of rows 1:NB of A
126: *> Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
127: *> Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
128: *> . . .
129: *>
130: *> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
131: *> stored under the diagonal of rows 1:MB of A, and by upper triangular
132: *> block reflectors, stored in array T(1:LDT,1:N).
133: *> For more information see Further Details in GELQT.
134: *>
135: *> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
136: *> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
137: *> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
138: *> The last Q(k) may use fewer rows.
139: *> For more information see Further Details in TPQRT.
140: *>
141: *> For more details of the overall algorithm, see the description of
142: *> Sequential TSQR in Section 2.2 of [1].
143: *>
144: *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
145: *> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
146: *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
147: *> \endverbatim
148: *>
149: * =====================================================================
150: SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
151: $ INFO)
152: *
1.3 ! bertrand 153: * -- LAPACK computational routine (version 3.7.1) --
1.1 bertrand 154: * -- LAPACK is a software package provided by Univ. of Tennessee, --
155: * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
1.3 ! bertrand 156: * June 2017
1.1 bertrand 157: *
158: * .. Scalar Arguments ..
159: INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT
160: * ..
161: * .. Array Arguments ..
162: DOUBLE PRECISION A( LDA, * ), WORK( * ), T( LDT, *)
163: * ..
164: *
165: * =====================================================================
166: *
167: * ..
168: * .. Local Scalars ..
169: LOGICAL LQUERY
170: INTEGER I, II, KK, CTR
171: * ..
172: * .. EXTERNAL FUNCTIONS ..
173: LOGICAL LSAME
174: EXTERNAL LSAME
175: * .. EXTERNAL SUBROUTINES ..
176: EXTERNAL DGELQT, DTPLQT, XERBLA
177: * .. INTRINSIC FUNCTIONS ..
178: INTRINSIC MAX, MIN, MOD
179: * ..
180: * .. EXECUTABLE STATEMENTS ..
181: *
182: * TEST THE INPUT ARGUMENTS
183: *
184: INFO = 0
185: *
186: LQUERY = ( LWORK.EQ.-1 )
187: *
188: IF( M.LT.0 ) THEN
189: INFO = -1
190: ELSE IF( N.LT.0 .OR. N.LT.M ) THEN
191: INFO = -2
192: ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 )) THEN
193: INFO = -3
194: ELSE IF( NB.LE.M ) THEN
195: INFO = -4
196: ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
197: INFO = -5
198: ELSE IF( LDT.LT.MB ) THEN
199: INFO = -8
200: ELSE IF( ( LWORK.LT.M*MB) .AND. (.NOT.LQUERY) ) THEN
201: INFO = -10
202: END IF
203: IF( INFO.EQ.0) THEN
204: WORK(1) = MB*M
205: END IF
206: *
207: IF( INFO.NE.0 ) THEN
208: CALL XERBLA( 'DLASWLQ', -INFO )
209: RETURN
210: ELSE IF (LQUERY) THEN
211: RETURN
212: END IF
213: *
214: * Quick return if possible
215: *
216: IF( MIN(M,N).EQ.0 ) THEN
217: RETURN
218: END IF
219: *
220: * The LQ Decomposition
221: *
222: IF((M.GE.N).OR.(NB.LE.M).OR.(NB.GE.N)) THEN
223: CALL DGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO)
224: RETURN
225: END IF
226: *
227: KK = MOD((N-M),(NB-M))
228: II=N-KK+1
229: *
230: * Compute the LQ factorization of the first block A(1:M,1:NB)
231: *
232: CALL DGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO)
233: CTR = 1
234: *
235: DO I = NB+1, II-NB+M , (NB-M)
236: *
237: * Compute the QR factorization of the current block A(1:M,I:I+NB-M)
238: *
239: CALL DTPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ),
240: $ LDA, T(1, CTR * M + 1),
241: $ LDT, WORK, INFO )
242: CTR = CTR + 1
243: END DO
244: *
245: * Compute the QR factorization of the last block A(1:M,II:N)
246: *
247: IF (II.LE.N) THEN
248: CALL DTPLQT( M, KK, 0, MB, A(1,1), LDA, A( 1, II ),
249: $ LDA, T(1, CTR * M + 1), LDT,
250: $ WORK, INFO )
251: END IF
252: *
253: WORK( 1 ) = M * MB
254: RETURN
255: *
256: * End of DLASWLQ
257: *
258: END
CVSweb interface <joel.bertrand@systella.fr>