Annotation of rpl/lapack/lapack/dlaswlq.f, revision 1.1

1.1     ! bertrand    1: *
        !             2: *  Definition:
        !             3: *  ===========
        !             4: *
        !             5: *       SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK,
        !             6: *                            LWORK, INFO)
        !             7: *
        !             8: *       .. Scalar Arguments ..
        !             9: *       INTEGER           INFO, LDA, M, N, MB, NB, LDT, LWORK
        !            10: *       ..
        !            11: *       .. Array Arguments ..
        !            12: *       DOUBLE PRECISION  A( LDA, * ), T( LDT, * ), WORK( * )
        !            13: *       ..
        !            14: *
        !            15: *
        !            16: *> \par Purpose:
        !            17: *  =============
        !            18: *>
        !            19: *> \verbatim
        !            20: *>
        !            21: *>          DLASWLQ computes a blocked Short-Wide LQ factorization of a
        !            22: *>          M-by-N matrix A, where N >= M:
        !            23: *>          A = L * Q
        !            24: *> \endverbatim
        !            25: *
        !            26: *  Arguments:
        !            27: *  ==========
        !            28: *
        !            29: *> \param[in] M
        !            30: *> \verbatim
        !            31: *>          M is INTEGER
        !            32: *>          The number of rows of the matrix A.  M >= 0.
        !            33: *> \endverbatim
        !            34: *>
        !            35: *> \param[in] N
        !            36: *> \verbatim
        !            37: *>          N is INTEGER
        !            38: *>          The number of columns of the matrix A.  N >= M >= 0.
        !            39: *> \endverbatim
        !            40: *>
        !            41: *> \param[in] MB
        !            42: *> \verbatim
        !            43: *>          MB is INTEGER
        !            44: *>          The row block size to be used in the blocked QR.
        !            45: *>          M >= MB >= 1
        !            46: *> \endverbatim
        !            47: *> \param[in] NB
        !            48: *> \verbatim
        !            49: *>          NB is INTEGER
        !            50: *>          The column block size to be used in the blocked QR.
        !            51: *>          NB > M.
        !            52: *> \endverbatim
        !            53: *>
        !            54: *> \param[in,out] A
        !            55: *> \verbatim
        !            56: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !            57: *>          On entry, the M-by-N matrix A.
        !            58: *>          On exit, the elements on and bleow the diagonal
        !            59: *>          of the array contain the N-by-N lower triangular matrix L;
        !            60: *>          the elements above the diagonal represent Q by the rows
        !            61: *>          of blocked V (see Further Details).
        !            62: *>
        !            63: *> \endverbatim
        !            64: *>
        !            65: *> \param[in] LDA
        !            66: *> \verbatim
        !            67: *>          LDA is INTEGER
        !            68: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !            69: *> \endverbatim
        !            70: *>
        !            71: *> \param[out] T
        !            72: *> \verbatim
        !            73: *>          T is DOUBLE PRECISION array,
        !            74: *>          dimension (LDT, N * Number_of_row_blocks)
        !            75: *>          where Number_of_row_blocks = CEIL((N-M)/(NB-M))
        !            76: *>          The blocked upper triangular block reflectors stored in compact form
        !            77: *>          as a sequence of upper triangular blocks.
        !            78: *>          See Further Details below.
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[in] LDT
        !            82: *> \verbatim
        !            83: *>          LDT is INTEGER
        !            84: *>          The leading dimension of the array T.  LDT >= MB.
        !            85: *> \endverbatim
        !            86: *>
        !            87: *>
        !            88: *> \param[out] WORK
        !            89: *> \verbatim
        !            90: *>         (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !            91: *>
        !            92: *> \endverbatim
        !            93: *> \param[in] LWORK
        !            94: *> \verbatim
        !            95: *>          The dimension of the array WORK.  LWORK >= MB*M.
        !            96: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !            97: *>          only calculates the optimal size of the WORK array, returns
        !            98: *>          this value as the first entry of the WORK array, and no error
        !            99: *>          message related to LWORK is issued by XERBLA.
        !           100: *>
        !           101: *> \endverbatim
        !           102: *> \param[out] INFO
        !           103: *> \verbatim
        !           104: *>          INFO is INTEGER
        !           105: *>          = 0:  successful exit
        !           106: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           107: *> \endverbatim
        !           108: *
        !           109: *  Authors:
        !           110: *  ========
        !           111: *
        !           112: *> \author Univ. of Tennessee
        !           113: *> \author Univ. of California Berkeley
        !           114: *> \author Univ. of Colorado Denver
        !           115: *> \author NAG Ltd.
        !           116: *
        !           117: *> \par Further Details:
        !           118: *  =====================
        !           119: *>
        !           120: *> \verbatim
        !           121: *> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
        !           122: *> representing Q as a product of other orthogonal matrices
        !           123: *>   Q = Q(1) * Q(2) * . . . * Q(k)
        !           124: *> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
        !           125: *>   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
        !           126: *>   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
        !           127: *>   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
        !           128: *>   . . .
        !           129: *>
        !           130: *> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
        !           131: *> stored under the diagonal of rows 1:MB of A, and by upper triangular
        !           132: *> block reflectors, stored in array T(1:LDT,1:N).
        !           133: *> For more information see Further Details in GELQT.
        !           134: *>
        !           135: *> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
        !           136: *> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
        !           137: *> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
        !           138: *> The last Q(k) may use fewer rows.
        !           139: *> For more information see Further Details in TPQRT.
        !           140: *>
        !           141: *> For more details of the overall algorithm, see the description of
        !           142: *> Sequential TSQR in Section 2.2 of [1].
        !           143: *>
        !           144: *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
        !           145: *>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
        !           146: *>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
        !           147: *> \endverbatim
        !           148: *>
        !           149: *  =====================================================================
        !           150:       SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
        !           151:      $                  INFO)
        !           152: *
        !           153: *  -- LAPACK computational routine (version 3.7.0) --
        !           154: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           155: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
        !           156: *     December 2016
        !           157: *
        !           158: *     .. Scalar Arguments ..
        !           159:       INTEGER           INFO, LDA, M, N, MB, NB, LWORK, LDT
        !           160: *     ..
        !           161: *     .. Array Arguments ..
        !           162:       DOUBLE PRECISION  A( LDA, * ), WORK( * ), T( LDT, *)
        !           163: *     ..
        !           164: *
        !           165: *  =====================================================================
        !           166: *
        !           167: *     ..
        !           168: *     .. Local Scalars ..
        !           169:       LOGICAL    LQUERY
        !           170:       INTEGER    I, II, KK, CTR
        !           171: *     ..
        !           172: *     .. EXTERNAL FUNCTIONS ..
        !           173:       LOGICAL            LSAME
        !           174:       EXTERNAL           LSAME
        !           175: *     .. EXTERNAL SUBROUTINES ..
        !           176:       EXTERNAL           DGELQT, DTPLQT, XERBLA
        !           177: *     .. INTRINSIC FUNCTIONS ..
        !           178:       INTRINSIC          MAX, MIN, MOD
        !           179: *     ..
        !           180: *     .. EXECUTABLE STATEMENTS ..
        !           181: *
        !           182: *     TEST THE INPUT ARGUMENTS
        !           183: *
        !           184:       INFO = 0
        !           185: *
        !           186:       LQUERY = ( LWORK.EQ.-1 )
        !           187: *
        !           188:       IF( M.LT.0 ) THEN
        !           189:         INFO = -1
        !           190:       ELSE IF( N.LT.0 .OR. N.LT.M ) THEN
        !           191:         INFO = -2
        !           192:       ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 )) THEN
        !           193:         INFO = -3
        !           194:       ELSE IF( NB.LE.M ) THEN
        !           195:         INFO = -4
        !           196:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           197:         INFO = -5
        !           198:       ELSE IF( LDT.LT.MB ) THEN
        !           199:         INFO = -8
        !           200:       ELSE IF( ( LWORK.LT.M*MB) .AND. (.NOT.LQUERY) ) THEN
        !           201:         INFO = -10
        !           202:       END IF
        !           203:       IF( INFO.EQ.0)  THEN
        !           204:       WORK(1) = MB*M
        !           205:       END IF
        !           206: *
        !           207:       IF( INFO.NE.0 ) THEN
        !           208:         CALL XERBLA( 'DLASWLQ', -INFO )
        !           209:         RETURN
        !           210:       ELSE IF (LQUERY) THEN
        !           211:        RETURN
        !           212:       END IF
        !           213: *
        !           214: *     Quick return if possible
        !           215: *
        !           216:       IF( MIN(M,N).EQ.0 ) THEN
        !           217:           RETURN
        !           218:       END IF
        !           219: *
        !           220: *     The LQ Decomposition
        !           221: *
        !           222:        IF((M.GE.N).OR.(NB.LE.M).OR.(NB.GE.N)) THEN
        !           223:         CALL DGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO)
        !           224:         RETURN
        !           225:        END IF
        !           226: *
        !           227:        KK = MOD((N-M),(NB-M))
        !           228:        II=N-KK+1
        !           229: *
        !           230: *      Compute the LQ factorization of the first block A(1:M,1:NB)
        !           231: *
        !           232:        CALL DGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO)
        !           233:        CTR = 1
        !           234: *
        !           235:        DO I = NB+1, II-NB+M , (NB-M)
        !           236: *
        !           237: *      Compute the QR factorization of the current block A(1:M,I:I+NB-M)
        !           238: *
        !           239:          CALL DTPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ),
        !           240:      $                  LDA, T(1, CTR * M + 1),
        !           241:      $                  LDT, WORK, INFO )
        !           242:          CTR = CTR + 1
        !           243:        END DO
        !           244: *
        !           245: *     Compute the QR factorization of the last block A(1:M,II:N)
        !           246: *
        !           247:        IF (II.LE.N) THEN
        !           248:         CALL DTPLQT( M, KK, 0, MB, A(1,1), LDA, A( 1, II ),
        !           249:      $                  LDA, T(1, CTR * M + 1), LDT,
        !           250:      $                  WORK, INFO )
        !           251:        END IF
        !           252: *
        !           253:       WORK( 1 ) = M * MB
        !           254:       RETURN
        !           255: *
        !           256: *     End of DLASWLQ
        !           257: *
        !           258:       END

CVSweb interface <joel.bertrand@systella.fr>