File:  [local] / rpl / lapack / lapack / dlasq2.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:35 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b DLASQ2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLASQ2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASQ2( N, Z, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   Z( * )
   28: *       ..
   29: *  
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> DLASQ2 computes all the eigenvalues of the symmetric positive 
   37: *> definite tridiagonal matrix associated with the qd array Z to high
   38: *> relative accuracy are computed to high relative accuracy, in the
   39: *> absence of denormalization, underflow and overflow.
   40: *>
   41: *> To see the relation of Z to the tridiagonal matrix, let L be a
   42: *> unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
   43: *> let U be an upper bidiagonal matrix with 1's above and diagonal
   44: *> Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
   45: *> symmetric tridiagonal to which it is similar.
   46: *>
   47: *> Note : DLASQ2 defines a logical variable, IEEE, which is true
   48: *> on machines which follow ieee-754 floating-point standard in their
   49: *> handling of infinities and NaNs, and false otherwise. This variable
   50: *> is passed to DLASQ3.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>        The number of rows and columns in the matrix. N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in,out] Z
   63: *> \verbatim
   64: *>          Z is DOUBLE PRECISION array, dimension ( 4*N )
   65: *>        On entry Z holds the qd array. On exit, entries 1 to N hold
   66: *>        the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
   67: *>        trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
   68: *>        N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
   69: *>        holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
   70: *>        shifts that failed.
   71: *> \endverbatim
   72: *>
   73: *> \param[out] INFO
   74: *> \verbatim
   75: *>          INFO is INTEGER
   76: *>        = 0: successful exit
   77: *>        < 0: if the i-th argument is a scalar and had an illegal
   78: *>             value, then INFO = -i, if the i-th argument is an
   79: *>             array and the j-entry had an illegal value, then
   80: *>             INFO = -(i*100+j)
   81: *>        > 0: the algorithm failed
   82: *>              = 1, a split was marked by a positive value in E
   83: *>              = 2, current block of Z not diagonalized after 100*N
   84: *>                   iterations (in inner while loop).  On exit Z holds
   85: *>                   a qd array with the same eigenvalues as the given Z.
   86: *>              = 3, termination criterion of outer while loop not met 
   87: *>                   (program created more than N unreduced blocks)
   88: *> \endverbatim
   89: *
   90: *  Authors:
   91: *  ========
   92: *
   93: *> \author Univ. of Tennessee 
   94: *> \author Univ. of California Berkeley 
   95: *> \author Univ. of Colorado Denver 
   96: *> \author NAG Ltd. 
   97: *
   98: *> \date November 2011
   99: *
  100: *> \ingroup auxOTHERcomputational
  101: *
  102: *> \par Further Details:
  103: *  =====================
  104: *>
  105: *> \verbatim
  106: *>
  107: *>  Local Variables: I0:N0 defines a current unreduced segment of Z.
  108: *>  The shifts are accumulated in SIGMA. Iteration count is in ITER.
  109: *>  Ping-pong is controlled by PP (alternates between 0 and 1).
  110: *> \endverbatim
  111: *>
  112: *  =====================================================================
  113:       SUBROUTINE DLASQ2( N, Z, INFO )
  114: *
  115: *  -- LAPACK computational routine (version 3.4.0) --
  116: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  117: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  118: *     November 2011
  119: *
  120: *     .. Scalar Arguments ..
  121:       INTEGER            INFO, N
  122: *     ..
  123: *     .. Array Arguments ..
  124:       DOUBLE PRECISION   Z( * )
  125: *     ..
  126: *
  127: *  =====================================================================
  128: *
  129: *     .. Parameters ..
  130:       DOUBLE PRECISION   CBIAS
  131:       PARAMETER          ( CBIAS = 1.50D0 )
  132:       DOUBLE PRECISION   ZERO, HALF, ONE, TWO, FOUR, HUNDRD
  133:       PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0,
  134:      $                     TWO = 2.0D0, FOUR = 4.0D0, HUNDRD = 100.0D0 )
  135: *     ..
  136: *     .. Local Scalars ..
  137:       LOGICAL            IEEE
  138:       INTEGER            I0, I1, I4, IINFO, IPN4, ITER, IWHILA, IWHILB,
  139:      $                   K, KMIN, N0, N1, NBIG, NDIV, NFAIL, PP, SPLT, 
  140:      $                   TTYPE
  141:       DOUBLE PRECISION   D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN,
  142:      $                   DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX,
  143:      $                   QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL,
  144:      $                   TOL2, TRACE, ZMAX, TEMPE, TEMPQ
  145: *     ..
  146: *     .. External Subroutines ..
  147:       EXTERNAL           DLASQ3, DLASRT, XERBLA
  148: *     ..
  149: *     .. External Functions ..
  150:       INTEGER            ILAENV
  151:       DOUBLE PRECISION   DLAMCH
  152:       EXTERNAL           DLAMCH, ILAENV
  153: *     ..
  154: *     .. Intrinsic Functions ..
  155:       INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
  156: *     ..
  157: *     .. Executable Statements ..
  158: *      
  159: *     Test the input arguments.
  160: *     (in case DLASQ2 is not called by DLASQ1)
  161: *
  162:       INFO = 0
  163:       EPS = DLAMCH( 'Precision' )
  164:       SAFMIN = DLAMCH( 'Safe minimum' )
  165:       TOL = EPS*HUNDRD
  166:       TOL2 = TOL**2
  167: *
  168:       IF( N.LT.0 ) THEN
  169:          INFO = -1
  170:          CALL XERBLA( 'DLASQ2', 1 )
  171:          RETURN
  172:       ELSE IF( N.EQ.0 ) THEN
  173:          RETURN
  174:       ELSE IF( N.EQ.1 ) THEN
  175: *
  176: *        1-by-1 case.
  177: *
  178:          IF( Z( 1 ).LT.ZERO ) THEN
  179:             INFO = -201
  180:             CALL XERBLA( 'DLASQ2', 2 )
  181:          END IF
  182:          RETURN
  183:       ELSE IF( N.EQ.2 ) THEN
  184: *
  185: *        2-by-2 case.
  186: *
  187:          IF( Z( 2 ).LT.ZERO .OR. Z( 3 ).LT.ZERO ) THEN
  188:             INFO = -2
  189:             CALL XERBLA( 'DLASQ2', 2 )
  190:             RETURN
  191:          ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN
  192:             D = Z( 3 )
  193:             Z( 3 ) = Z( 1 )
  194:             Z( 1 ) = D
  195:          END IF
  196:          Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 )
  197:          IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN
  198:             T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) ) 
  199:             S = Z( 3 )*( Z( 2 ) / T )
  200:             IF( S.LE.T ) THEN
  201:                S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) )
  202:             ELSE
  203:                S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
  204:             END IF
  205:             T = Z( 1 ) + ( S+Z( 2 ) )
  206:             Z( 3 ) = Z( 3 )*( Z( 1 ) / T )
  207:             Z( 1 ) = T
  208:          END IF
  209:          Z( 2 ) = Z( 3 )
  210:          Z( 6 ) = Z( 2 ) + Z( 1 )
  211:          RETURN
  212:       END IF
  213: *
  214: *     Check for negative data and compute sums of q's and e's.
  215: *
  216:       Z( 2*N ) = ZERO
  217:       EMIN = Z( 2 )
  218:       QMAX = ZERO
  219:       ZMAX = ZERO
  220:       D = ZERO
  221:       E = ZERO
  222: *
  223:       DO 10 K = 1, 2*( N-1 ), 2
  224:          IF( Z( K ).LT.ZERO ) THEN
  225:             INFO = -( 200+K )
  226:             CALL XERBLA( 'DLASQ2', 2 )
  227:             RETURN
  228:          ELSE IF( Z( K+1 ).LT.ZERO ) THEN
  229:             INFO = -( 200+K+1 )
  230:             CALL XERBLA( 'DLASQ2', 2 )
  231:             RETURN
  232:          END IF
  233:          D = D + Z( K )
  234:          E = E + Z( K+1 )
  235:          QMAX = MAX( QMAX, Z( K ) )
  236:          EMIN = MIN( EMIN, Z( K+1 ) )
  237:          ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )
  238:    10 CONTINUE
  239:       IF( Z( 2*N-1 ).LT.ZERO ) THEN
  240:          INFO = -( 200+2*N-1 )
  241:          CALL XERBLA( 'DLASQ2', 2 )
  242:          RETURN
  243:       END IF
  244:       D = D + Z( 2*N-1 )
  245:       QMAX = MAX( QMAX, Z( 2*N-1 ) )
  246:       ZMAX = MAX( QMAX, ZMAX )
  247: *
  248: *     Check for diagonality.
  249: *
  250:       IF( E.EQ.ZERO ) THEN
  251:          DO 20 K = 2, N
  252:             Z( K ) = Z( 2*K-1 )
  253:    20    CONTINUE
  254:          CALL DLASRT( 'D', N, Z, IINFO )
  255:          Z( 2*N-1 ) = D
  256:          RETURN
  257:       END IF
  258: *
  259:       TRACE = D + E
  260: *
  261: *     Check for zero data.
  262: *
  263:       IF( TRACE.EQ.ZERO ) THEN
  264:          Z( 2*N-1 ) = ZERO
  265:          RETURN
  266:       END IF
  267: *         
  268: *     Check whether the machine is IEEE conformable.
  269: *         
  270:       IEEE = ILAENV( 10, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND.
  271:      $       ILAENV( 11, 'DLASQ2', 'N', 1, 2, 3, 4 ).EQ.1      
  272: *         
  273: *     Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
  274: *
  275:       DO 30 K = 2*N, 2, -2
  276:          Z( 2*K ) = ZERO 
  277:          Z( 2*K-1 ) = Z( K ) 
  278:          Z( 2*K-2 ) = ZERO 
  279:          Z( 2*K-3 ) = Z( K-1 ) 
  280:    30 CONTINUE
  281: *
  282:       I0 = 1
  283:       N0 = N
  284: *
  285: *     Reverse the qd-array, if warranted.
  286: *
  287:       IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN
  288:          IPN4 = 4*( I0+N0 )
  289:          DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4
  290:             TEMP = Z( I4-3 )
  291:             Z( I4-3 ) = Z( IPN4-I4-3 )
  292:             Z( IPN4-I4-3 ) = TEMP
  293:             TEMP = Z( I4-1 )
  294:             Z( I4-1 ) = Z( IPN4-I4-5 )
  295:             Z( IPN4-I4-5 ) = TEMP
  296:    40    CONTINUE
  297:       END IF
  298: *
  299: *     Initial split checking via dqd and Li's test.
  300: *
  301:       PP = 0
  302: *
  303:       DO 80 K = 1, 2
  304: *
  305:          D = Z( 4*N0+PP-3 )
  306:          DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4
  307:             IF( Z( I4-1 ).LE.TOL2*D ) THEN
  308:                Z( I4-1 ) = -ZERO
  309:                D = Z( I4-3 )
  310:             ELSE
  311:                D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )
  312:             END IF
  313:    50    CONTINUE
  314: *
  315: *        dqd maps Z to ZZ plus Li's test.
  316: *
  317:          EMIN = Z( 4*I0+PP+1 )
  318:          D = Z( 4*I0+PP-3 )
  319:          DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4
  320:             Z( I4-2*PP-2 ) = D + Z( I4-1 )
  321:             IF( Z( I4-1 ).LE.TOL2*D ) THEN
  322:                Z( I4-1 ) = -ZERO
  323:                Z( I4-2*PP-2 ) = D
  324:                Z( I4-2*PP ) = ZERO
  325:                D = Z( I4+1 )
  326:             ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND.
  327:      $               SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN
  328:                TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )
  329:                Z( I4-2*PP ) = Z( I4-1 )*TEMP
  330:                D = D*TEMP
  331:             ELSE
  332:                Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )
  333:                D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )
  334:             END IF
  335:             EMIN = MIN( EMIN, Z( I4-2*PP ) )
  336:    60    CONTINUE 
  337:          Z( 4*N0-PP-2 ) = D
  338: *
  339: *        Now find qmax.
  340: *
  341:          QMAX = Z( 4*I0-PP-2 )
  342:          DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4
  343:             QMAX = MAX( QMAX, Z( I4 ) )
  344:    70    CONTINUE
  345: *
  346: *        Prepare for the next iteration on K.
  347: *
  348:          PP = 1 - PP
  349:    80 CONTINUE
  350: *
  351: *     Initialise variables to pass to DLASQ3.
  352: *
  353:       TTYPE = 0
  354:       DMIN1 = ZERO
  355:       DMIN2 = ZERO
  356:       DN    = ZERO
  357:       DN1   = ZERO
  358:       DN2   = ZERO
  359:       G     = ZERO
  360:       TAU   = ZERO
  361: *
  362:       ITER = 2
  363:       NFAIL = 0
  364:       NDIV = 2*( N0-I0 )
  365: *
  366:       DO 160 IWHILA = 1, N + 1
  367:          IF( N0.LT.1  368:      $      GO TO 170
  369: *
  370: *        While array unfinished do 
  371: *
  372: *        E(N0) holds the value of SIGMA when submatrix in I0:N0
  373: *        splits from the rest of the array, but is negated.
  374: *      
  375:          DESIG = ZERO
  376:          IF( N0.EQ.N ) THEN
  377:             SIGMA = ZERO
  378:          ELSE
  379:             SIGMA = -Z( 4*N0-1 )
  380:          END IF
  381:          IF( SIGMA.LT.ZERO ) THEN
  382:             INFO = 1
  383:             RETURN
  384:          END IF
  385: *
  386: *        Find last unreduced submatrix's top index I0, find QMAX and
  387: *        EMIN. Find Gershgorin-type bound if Q's much greater than E's.
  388: *
  389:          EMAX = ZERO 
  390:          IF( N0.GT.I0 ) THEN
  391:             EMIN = ABS( Z( 4*N0-5 ) )
  392:          ELSE
  393:             EMIN = ZERO
  394:          END IF
  395:          QMIN = Z( 4*N0-3 )
  396:          QMAX = QMIN
  397:          DO 90 I4 = 4*N0, 8, -4
  398:             IF( Z( I4-5 ).LE.ZERO )
  399:      $         GO TO 100
  400:             IF( QMIN.GE.FOUR*EMAX ) THEN
  401:                QMIN = MIN( QMIN, Z( I4-3 ) )
  402:                EMAX = MAX( EMAX, Z( I4-5 ) )
  403:             END IF
  404:             QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )
  405:             EMIN = MIN( EMIN, Z( I4-5 ) )
  406:    90    CONTINUE
  407:          I4 = 4 
  408: *
  409:   100    CONTINUE
  410:          I0 = I4 / 4
  411:          PP = 0
  412: *
  413:          IF( N0-I0.GT.1 ) THEN
  414:             DEE = Z( 4*I0-3 )
  415:             DEEMIN = DEE
  416:             KMIN = I0
  417:             DO 110 I4 = 4*I0+1, 4*N0-3, 4
  418:                DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) )
  419:                IF( DEE.LE.DEEMIN ) THEN
  420:                   DEEMIN = DEE
  421:                   KMIN = ( I4+3 )/4
  422:                END IF
  423:   110       CONTINUE
  424:             IF( (KMIN-I0)*2.LT.N0-KMIN .AND. 
  425:      $         DEEMIN.LE.HALF*Z(4*N0-3) ) THEN
  426:                IPN4 = 4*( I0+N0 )
  427:                PP = 2
  428:                DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4
  429:                   TEMP = Z( I4-3 )
  430:                   Z( I4-3 ) = Z( IPN4-I4-3 )
  431:                   Z( IPN4-I4-3 ) = TEMP
  432:                   TEMP = Z( I4-2 )
  433:                   Z( I4-2 ) = Z( IPN4-I4-2 )
  434:                   Z( IPN4-I4-2 ) = TEMP
  435:                   TEMP = Z( I4-1 )
  436:                   Z( I4-1 ) = Z( IPN4-I4-5 )
  437:                   Z( IPN4-I4-5 ) = TEMP
  438:                   TEMP = Z( I4 )
  439:                   Z( I4 ) = Z( IPN4-I4-4 )
  440:                   Z( IPN4-I4-4 ) = TEMP
  441:   120          CONTINUE
  442:             END IF
  443:          END IF
  444: *
  445: *        Put -(initial shift) into DMIN.
  446: *
  447:          DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )
  448: *
  449: *        Now I0:N0 is unreduced. 
  450: *        PP = 0 for ping, PP = 1 for pong.
  451: *        PP = 2 indicates that flipping was applied to the Z array and
  452: *               and that the tests for deflation upon entry in DLASQ3 
  453: *               should not be performed.
  454: *
  455:          NBIG = 100*( N0-I0+1 )
  456:          DO 140 IWHILB = 1, NBIG
  457:             IF( I0.GT.N0 ) 
  458:      $         GO TO 150
  459: *
  460: *           While submatrix unfinished take a good dqds step.
  461: *
  462:             CALL DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
  463:      $                   ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
  464:      $                   DN2, G, TAU )
  465: *
  466:             PP = 1 - PP
  467: *
  468: *           When EMIN is very small check for splits.
  469: *
  470:             IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN
  471:                IF( Z( 4*N0 ).LE.TOL2*QMAX .OR.
  472:      $             Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN
  473:                   SPLT = I0 - 1
  474:                   QMAX = Z( 4*I0-3 )
  475:                   EMIN = Z( 4*I0-1 )
  476:                   OLDEMN = Z( 4*I0 )
  477:                   DO 130 I4 = 4*I0, 4*( N0-3 ), 4
  478:                      IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR.
  479:      $                   Z( I4-1 ).LE.TOL2*SIGMA ) THEN
  480:                         Z( I4-1 ) = -SIGMA
  481:                         SPLT = I4 / 4
  482:                         QMAX = ZERO
  483:                         EMIN = Z( I4+3 )
  484:                         OLDEMN = Z( I4+4 )
  485:                      ELSE
  486:                         QMAX = MAX( QMAX, Z( I4+1 ) )
  487:                         EMIN = MIN( EMIN, Z( I4-1 ) )
  488:                         OLDEMN = MIN( OLDEMN, Z( I4 ) )
  489:                      END IF
  490:   130             CONTINUE
  491:                   Z( 4*N0-1 ) = EMIN
  492:                   Z( 4*N0 ) = OLDEMN
  493:                   I0 = SPLT + 1
  494:                END IF
  495:             END IF
  496: *
  497:   140    CONTINUE
  498: *
  499:          INFO = 2
  500: *       
  501: *        Maximum number of iterations exceeded, restore the shift 
  502: *        SIGMA and place the new d's and e's in a qd array.
  503: *        This might need to be done for several blocks
  504: *
  505:          I1 = I0
  506:          N1 = N0
  507:  145     CONTINUE
  508:          TEMPQ = Z( 4*I0-3 )
  509:          Z( 4*I0-3 ) = Z( 4*I0-3 ) + SIGMA
  510:          DO K = I0+1, N0
  511:             TEMPE = Z( 4*K-5 )
  512:             Z( 4*K-5 ) = Z( 4*K-5 ) * (TEMPQ / Z( 4*K-7 ))
  513:             TEMPQ = Z( 4*K-3 )
  514:             Z( 4*K-3 ) = Z( 4*K-3 ) + SIGMA + TEMPE - Z( 4*K-5 )
  515:          END DO
  516: *
  517: *        Prepare to do this on the previous block if there is one
  518: *
  519:          IF( I1.GT.1 ) THEN
  520:             N1 = I1-1
  521:             DO WHILE( ( I1.GE.2 ) .AND. ( Z(4*I1-5).GE.ZERO ) )
  522:                I1 = I1 - 1
  523:             END DO
  524:             SIGMA = -Z(4*N1-1)
  525:             GO TO 145
  526:          END IF
  527: 
  528:          DO K = 1, N
  529:             Z( 2*K-1 ) = Z( 4*K-3 )
  530: *
  531: *        Only the block 1..N0 is unfinished.  The rest of the e's
  532: *        must be essentially zero, although sometimes other data
  533: *        has been stored in them.
  534: *
  535:             IF( K.LT.N0 ) THEN
  536:                Z( 2*K ) = Z( 4*K-1 )
  537:             ELSE
  538:                Z( 2*K ) = 0
  539:             END IF
  540:          END DO
  541:          RETURN
  542: *
  543: *        end IWHILB
  544: *
  545:   150    CONTINUE
  546: *
  547:   160 CONTINUE
  548: *
  549:       INFO = 3
  550:       RETURN
  551: *
  552: *     end IWHILA   
  553: *
  554:   170 CONTINUE
  555: *      
  556: *     Move q's to the front.
  557: *      
  558:       DO 180 K = 2, N
  559:          Z( K ) = Z( 4*K-3 )
  560:   180 CONTINUE
  561: *      
  562: *     Sort and compute sum of eigenvalues.
  563: *
  564:       CALL DLASRT( 'D', N, Z, IINFO )
  565: *
  566:       E = ZERO
  567:       DO 190 K = N, 1, -1
  568:          E = E + Z( K )
  569:   190 CONTINUE
  570: *
  571: *     Store trace, sum(eigenvalues) and information on performance.
  572: *
  573:       Z( 2*N+1 ) = TRACE 
  574:       Z( 2*N+2 ) = E
  575:       Z( 2*N+3 ) = DBLE( ITER )
  576:       Z( 2*N+4 ) = DBLE( NDIV ) / DBLE( N**2 )
  577:       Z( 2*N+5 ) = HUNDRD*NFAIL / DBLE( ITER )
  578:       RETURN
  579: *
  580: *     End of DLASQ2
  581: *
  582:       END

CVSweb interface <joel.bertrand@systella.fr>