Annotation of rpl/lapack/lapack/dlasdq.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DLASDQ
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLASDQ + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasdq.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasdq.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasdq.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
        !            22: *                          U, LDU, C, LDC, WORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          UPLO
        !            26: *       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
        !            30: *      $                   VT( LDVT, * ), WORK( * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> DLASDQ computes the singular value decomposition (SVD) of a real
        !            40: *> (upper or lower) bidiagonal matrix with diagonal D and offdiagonal
        !            41: *> E, accumulating the transformations if desired. Letting B denote
        !            42: *> the input bidiagonal matrix, the algorithm computes orthogonal
        !            43: *> matrices Q and P such that B = Q * S * P**T (P**T denotes the transpose
        !            44: *> of P). The singular values S are overwritten on D.
        !            45: *>
        !            46: *> The input matrix U  is changed to U  * Q  if desired.
        !            47: *> The input matrix VT is changed to P**T * VT if desired.
        !            48: *> The input matrix C  is changed to Q**T * C  if desired.
        !            49: *>
        !            50: *> See "Computing  Small Singular Values of Bidiagonal Matrices With
        !            51: *> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
        !            52: *> LAPACK Working Note #3, for a detailed description of the algorithm.
        !            53: *> \endverbatim
        !            54: *
        !            55: *  Arguments:
        !            56: *  ==========
        !            57: *
        !            58: *> \param[in] UPLO
        !            59: *> \verbatim
        !            60: *>          UPLO is CHARACTER*1
        !            61: *>        On entry, UPLO specifies whether the input bidiagonal matrix
        !            62: *>        is upper or lower bidiagonal, and wether it is square are
        !            63: *>        not.
        !            64: *>           UPLO = 'U' or 'u'   B is upper bidiagonal.
        !            65: *>           UPLO = 'L' or 'l'   B is lower bidiagonal.
        !            66: *> \endverbatim
        !            67: *>
        !            68: *> \param[in] SQRE
        !            69: *> \verbatim
        !            70: *>          SQRE is INTEGER
        !            71: *>        = 0: then the input matrix is N-by-N.
        !            72: *>        = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
        !            73: *>             (N+1)-by-N if UPLU = 'L'.
        !            74: *>
        !            75: *>        The bidiagonal matrix has
        !            76: *>        N = NL + NR + 1 rows and
        !            77: *>        M = N + SQRE >= N columns.
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[in] N
        !            81: *> \verbatim
        !            82: *>          N is INTEGER
        !            83: *>        On entry, N specifies the number of rows and columns
        !            84: *>        in the matrix. N must be at least 0.
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[in] NCVT
        !            88: *> \verbatim
        !            89: *>          NCVT is INTEGER
        !            90: *>        On entry, NCVT specifies the number of columns of
        !            91: *>        the matrix VT. NCVT must be at least 0.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[in] NRU
        !            95: *> \verbatim
        !            96: *>          NRU is INTEGER
        !            97: *>        On entry, NRU specifies the number of rows of
        !            98: *>        the matrix U. NRU must be at least 0.
        !            99: *> \endverbatim
        !           100: *>
        !           101: *> \param[in] NCC
        !           102: *> \verbatim
        !           103: *>          NCC is INTEGER
        !           104: *>        On entry, NCC specifies the number of columns of
        !           105: *>        the matrix C. NCC must be at least 0.
        !           106: *> \endverbatim
        !           107: *>
        !           108: *> \param[in,out] D
        !           109: *> \verbatim
        !           110: *>          D is DOUBLE PRECISION array, dimension (N)
        !           111: *>        On entry, D contains the diagonal entries of the
        !           112: *>        bidiagonal matrix whose SVD is desired. On normal exit,
        !           113: *>        D contains the singular values in ascending order.
        !           114: *> \endverbatim
        !           115: *>
        !           116: *> \param[in,out] E
        !           117: *> \verbatim
        !           118: *>          E is DOUBLE PRECISION array.
        !           119: *>        dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
        !           120: *>        On entry, the entries of E contain the offdiagonal entries
        !           121: *>        of the bidiagonal matrix whose SVD is desired. On normal
        !           122: *>        exit, E will contain 0. If the algorithm does not converge,
        !           123: *>        D and E will contain the diagonal and superdiagonal entries
        !           124: *>        of a bidiagonal matrix orthogonally equivalent to the one
        !           125: *>        given as input.
        !           126: *> \endverbatim
        !           127: *>
        !           128: *> \param[in,out] VT
        !           129: *> \verbatim
        !           130: *>          VT is DOUBLE PRECISION array, dimension (LDVT, NCVT)
        !           131: *>        On entry, contains a matrix which on exit has been
        !           132: *>        premultiplied by P**T, dimension N-by-NCVT if SQRE = 0
        !           133: *>        and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in] LDVT
        !           137: *> \verbatim
        !           138: *>          LDVT is INTEGER
        !           139: *>        On entry, LDVT specifies the leading dimension of VT as
        !           140: *>        declared in the calling (sub) program. LDVT must be at
        !           141: *>        least 1. If NCVT is nonzero LDVT must also be at least N.
        !           142: *> \endverbatim
        !           143: *>
        !           144: *> \param[in,out] U
        !           145: *> \verbatim
        !           146: *>          U is DOUBLE PRECISION array, dimension (LDU, N)
        !           147: *>        On entry, contains a  matrix which on exit has been
        !           148: *>        postmultiplied by Q, dimension NRU-by-N if SQRE = 0
        !           149: *>        and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
        !           150: *> \endverbatim
        !           151: *>
        !           152: *> \param[in] LDU
        !           153: *> \verbatim
        !           154: *>          LDU is INTEGER
        !           155: *>        On entry, LDU  specifies the leading dimension of U as
        !           156: *>        declared in the calling (sub) program. LDU must be at
        !           157: *>        least max( 1, NRU ) .
        !           158: *> \endverbatim
        !           159: *>
        !           160: *> \param[in,out] C
        !           161: *> \verbatim
        !           162: *>          C is DOUBLE PRECISION array, dimension (LDC, NCC)
        !           163: *>        On entry, contains an N-by-NCC matrix which on exit
        !           164: *>        has been premultiplied by Q**T  dimension N-by-NCC if SQRE = 0
        !           165: *>        and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
        !           166: *> \endverbatim
        !           167: *>
        !           168: *> \param[in] LDC
        !           169: *> \verbatim
        !           170: *>          LDC is INTEGER
        !           171: *>        On entry, LDC  specifies the leading dimension of C as
        !           172: *>        declared in the calling (sub) program. LDC must be at
        !           173: *>        least 1. If NCC is nonzero, LDC must also be at least N.
        !           174: *> \endverbatim
        !           175: *>
        !           176: *> \param[out] WORK
        !           177: *> \verbatim
        !           178: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
        !           179: *>        Workspace. Only referenced if one of NCVT, NRU, or NCC is
        !           180: *>        nonzero, and if N is at least 2.
        !           181: *> \endverbatim
        !           182: *>
        !           183: *> \param[out] INFO
        !           184: *> \verbatim
        !           185: *>          INFO is INTEGER
        !           186: *>        On exit, a value of 0 indicates a successful exit.
        !           187: *>        If INFO < 0, argument number -INFO is illegal.
        !           188: *>        If INFO > 0, the algorithm did not converge, and INFO
        !           189: *>        specifies how many superdiagonals did not converge.
        !           190: *> \endverbatim
        !           191: *
        !           192: *  Authors:
        !           193: *  ========
        !           194: *
        !           195: *> \author Univ. of Tennessee 
        !           196: *> \author Univ. of California Berkeley 
        !           197: *> \author Univ. of Colorado Denver 
        !           198: *> \author NAG Ltd. 
        !           199: *
        !           200: *> \date November 2011
        !           201: *
        !           202: *> \ingroup auxOTHERauxiliary
        !           203: *
        !           204: *> \par Contributors:
        !           205: *  ==================
        !           206: *>
        !           207: *>     Ming Gu and Huan Ren, Computer Science Division, University of
        !           208: *>     California at Berkeley, USA
        !           209: *>
        !           210: *  =====================================================================
1.1       bertrand  211:       SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
                    212:      $                   U, LDU, C, LDC, WORK, INFO )
                    213: *
1.9     ! bertrand  214: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  215: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    216: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  217: *     November 2011
1.1       bertrand  218: *
                    219: *     .. Scalar Arguments ..
                    220:       CHARACTER          UPLO
                    221:       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
                    222: *     ..
                    223: *     .. Array Arguments ..
                    224:       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
                    225:      $                   VT( LDVT, * ), WORK( * )
                    226: *     ..
                    227: *
                    228: *  =====================================================================
                    229: *
                    230: *     .. Parameters ..
                    231:       DOUBLE PRECISION   ZERO
                    232:       PARAMETER          ( ZERO = 0.0D+0 )
                    233: *     ..
                    234: *     .. Local Scalars ..
                    235:       LOGICAL            ROTATE
                    236:       INTEGER            I, ISUB, IUPLO, J, NP1, SQRE1
                    237:       DOUBLE PRECISION   CS, R, SMIN, SN
                    238: *     ..
                    239: *     .. External Subroutines ..
                    240:       EXTERNAL           DBDSQR, DLARTG, DLASR, DSWAP, XERBLA
                    241: *     ..
                    242: *     .. External Functions ..
                    243:       LOGICAL            LSAME
                    244:       EXTERNAL           LSAME
                    245: *     ..
                    246: *     .. Intrinsic Functions ..
                    247:       INTRINSIC          MAX
                    248: *     ..
                    249: *     .. Executable Statements ..
                    250: *
                    251: *     Test the input parameters.
                    252: *
                    253:       INFO = 0
                    254:       IUPLO = 0
                    255:       IF( LSAME( UPLO, 'U' ) )
                    256:      $   IUPLO = 1
                    257:       IF( LSAME( UPLO, 'L' ) )
                    258:      $   IUPLO = 2
                    259:       IF( IUPLO.EQ.0 ) THEN
                    260:          INFO = -1
                    261:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
                    262:          INFO = -2
                    263:       ELSE IF( N.LT.0 ) THEN
                    264:          INFO = -3
                    265:       ELSE IF( NCVT.LT.0 ) THEN
                    266:          INFO = -4
                    267:       ELSE IF( NRU.LT.0 ) THEN
                    268:          INFO = -5
                    269:       ELSE IF( NCC.LT.0 ) THEN
                    270:          INFO = -6
                    271:       ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
                    272:      $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
                    273:          INFO = -10
                    274:       ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
                    275:          INFO = -12
                    276:       ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
                    277:      $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
                    278:          INFO = -14
                    279:       END IF
                    280:       IF( INFO.NE.0 ) THEN
                    281:          CALL XERBLA( 'DLASDQ', -INFO )
                    282:          RETURN
                    283:       END IF
                    284:       IF( N.EQ.0 )
                    285:      $   RETURN
                    286: *
                    287: *     ROTATE is true if any singular vectors desired, false otherwise
                    288: *
                    289:       ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
                    290:       NP1 = N + 1
                    291:       SQRE1 = SQRE
                    292: *
                    293: *     If matrix non-square upper bidiagonal, rotate to be lower
                    294: *     bidiagonal.  The rotations are on the right.
                    295: *
                    296:       IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN
                    297:          DO 10 I = 1, N - 1
                    298:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
                    299:             D( I ) = R
                    300:             E( I ) = SN*D( I+1 )
                    301:             D( I+1 ) = CS*D( I+1 )
                    302:             IF( ROTATE ) THEN
                    303:                WORK( I ) = CS
                    304:                WORK( N+I ) = SN
                    305:             END IF
                    306:    10    CONTINUE
                    307:          CALL DLARTG( D( N ), E( N ), CS, SN, R )
                    308:          D( N ) = R
                    309:          E( N ) = ZERO
                    310:          IF( ROTATE ) THEN
                    311:             WORK( N ) = CS
                    312:             WORK( N+N ) = SN
                    313:          END IF
                    314:          IUPLO = 2
                    315:          SQRE1 = 0
                    316: *
                    317: *        Update singular vectors if desired.
                    318: *
                    319:          IF( NCVT.GT.0 )
                    320:      $      CALL DLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ),
                    321:      $                  WORK( NP1 ), VT, LDVT )
                    322:       END IF
                    323: *
                    324: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
                    325: *     by applying Givens rotations on the left.
                    326: *
                    327:       IF( IUPLO.EQ.2 ) THEN
                    328:          DO 20 I = 1, N - 1
                    329:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
                    330:             D( I ) = R
                    331:             E( I ) = SN*D( I+1 )
                    332:             D( I+1 ) = CS*D( I+1 )
                    333:             IF( ROTATE ) THEN
                    334:                WORK( I ) = CS
                    335:                WORK( N+I ) = SN
                    336:             END IF
                    337:    20    CONTINUE
                    338: *
                    339: *        If matrix (N+1)-by-N lower bidiagonal, one additional
                    340: *        rotation is needed.
                    341: *
                    342:          IF( SQRE1.EQ.1 ) THEN
                    343:             CALL DLARTG( D( N ), E( N ), CS, SN, R )
                    344:             D( N ) = R
                    345:             IF( ROTATE ) THEN
                    346:                WORK( N ) = CS
                    347:                WORK( N+N ) = SN
                    348:             END IF
                    349:          END IF
                    350: *
                    351: *        Update singular vectors if desired.
                    352: *
                    353:          IF( NRU.GT.0 ) THEN
                    354:             IF( SQRE1.EQ.0 ) THEN
                    355:                CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ),
                    356:      $                     WORK( NP1 ), U, LDU )
                    357:             ELSE
                    358:                CALL DLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ),
                    359:      $                     WORK( NP1 ), U, LDU )
                    360:             END IF
                    361:          END IF
                    362:          IF( NCC.GT.0 ) THEN
                    363:             IF( SQRE1.EQ.0 ) THEN
                    364:                CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ),
                    365:      $                     WORK( NP1 ), C, LDC )
                    366:             ELSE
                    367:                CALL DLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ),
                    368:      $                     WORK( NP1 ), C, LDC )
                    369:             END IF
                    370:          END IF
                    371:       END IF
                    372: *
                    373: *     Call DBDSQR to compute the SVD of the reduced real
                    374: *     N-by-N upper bidiagonal matrix.
                    375: *
                    376:       CALL DBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
                    377:      $             LDC, WORK, INFO )
                    378: *
                    379: *     Sort the singular values into ascending order (insertion sort on
                    380: *     singular values, but only one transposition per singular vector)
                    381: *
                    382:       DO 40 I = 1, N
                    383: *
                    384: *        Scan for smallest D(I).
                    385: *
                    386:          ISUB = I
                    387:          SMIN = D( I )
                    388:          DO 30 J = I + 1, N
                    389:             IF( D( J ).LT.SMIN ) THEN
                    390:                ISUB = J
                    391:                SMIN = D( J )
                    392:             END IF
                    393:    30    CONTINUE
                    394:          IF( ISUB.NE.I ) THEN
                    395: *
                    396: *           Swap singular values and vectors.
                    397: *
                    398:             D( ISUB ) = D( I )
                    399:             D( I ) = SMIN
                    400:             IF( NCVT.GT.0 )
                    401:      $         CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT )
                    402:             IF( NRU.GT.0 )
                    403:      $         CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 )
                    404:             IF( NCC.GT.0 )
                    405:      $         CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC )
                    406:          END IF
                    407:    40 CONTINUE
                    408: *
                    409:       RETURN
                    410: *
                    411: *     End of DLASDQ
                    412: *
                    413:       END

CVSweb interface <joel.bertrand@systella.fr>