Annotation of rpl/lapack/lapack/dlasdq.f, revision 1.20

1.12      bertrand    1: *> \brief \b DLASDQ computes the SVD of a real bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download DLASDQ + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasdq.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasdq.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasdq.f">
1.9       bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
                     22: *                          U, LDU, C, LDC, WORK, INFO )
1.17      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
                     30: *      $                   VT( LDVT, * ), WORK( * )
                     31: *       ..
1.17      bertrand   32: *
1.9       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DLASDQ computes the singular value decomposition (SVD) of a real
                     40: *> (upper or lower) bidiagonal matrix with diagonal D and offdiagonal
                     41: *> E, accumulating the transformations if desired. Letting B denote
                     42: *> the input bidiagonal matrix, the algorithm computes orthogonal
                     43: *> matrices Q and P such that B = Q * S * P**T (P**T denotes the transpose
                     44: *> of P). The singular values S are overwritten on D.
                     45: *>
                     46: *> The input matrix U  is changed to U  * Q  if desired.
                     47: *> The input matrix VT is changed to P**T * VT if desired.
                     48: *> The input matrix C  is changed to Q**T * C  if desired.
                     49: *>
                     50: *> See "Computing  Small Singular Values of Bidiagonal Matrices With
                     51: *> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
                     52: *> LAPACK Working Note #3, for a detailed description of the algorithm.
                     53: *> \endverbatim
                     54: *
                     55: *  Arguments:
                     56: *  ==========
                     57: *
                     58: *> \param[in] UPLO
                     59: *> \verbatim
                     60: *>          UPLO is CHARACTER*1
                     61: *>        On entry, UPLO specifies whether the input bidiagonal matrix
1.15      bertrand   62: *>        is upper or lower bidiagonal, and whether it is square are
1.9       bertrand   63: *>        not.
                     64: *>           UPLO = 'U' or 'u'   B is upper bidiagonal.
                     65: *>           UPLO = 'L' or 'l'   B is lower bidiagonal.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] SQRE
                     69: *> \verbatim
                     70: *>          SQRE is INTEGER
                     71: *>        = 0: then the input matrix is N-by-N.
                     72: *>        = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
                     73: *>             (N+1)-by-N if UPLU = 'L'.
                     74: *>
                     75: *>        The bidiagonal matrix has
                     76: *>        N = NL + NR + 1 rows and
                     77: *>        M = N + SQRE >= N columns.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] N
                     81: *> \verbatim
                     82: *>          N is INTEGER
                     83: *>        On entry, N specifies the number of rows and columns
                     84: *>        in the matrix. N must be at least 0.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] NCVT
                     88: *> \verbatim
                     89: *>          NCVT is INTEGER
                     90: *>        On entry, NCVT specifies the number of columns of
                     91: *>        the matrix VT. NCVT must be at least 0.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] NRU
                     95: *> \verbatim
                     96: *>          NRU is INTEGER
                     97: *>        On entry, NRU specifies the number of rows of
                     98: *>        the matrix U. NRU must be at least 0.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] NCC
                    102: *> \verbatim
                    103: *>          NCC is INTEGER
                    104: *>        On entry, NCC specifies the number of columns of
                    105: *>        the matrix C. NCC must be at least 0.
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in,out] D
                    109: *> \verbatim
                    110: *>          D is DOUBLE PRECISION array, dimension (N)
                    111: *>        On entry, D contains the diagonal entries of the
                    112: *>        bidiagonal matrix whose SVD is desired. On normal exit,
                    113: *>        D contains the singular values in ascending order.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in,out] E
                    117: *> \verbatim
                    118: *>          E is DOUBLE PRECISION array.
                    119: *>        dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
                    120: *>        On entry, the entries of E contain the offdiagonal entries
                    121: *>        of the bidiagonal matrix whose SVD is desired. On normal
                    122: *>        exit, E will contain 0. If the algorithm does not converge,
                    123: *>        D and E will contain the diagonal and superdiagonal entries
                    124: *>        of a bidiagonal matrix orthogonally equivalent to the one
                    125: *>        given as input.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in,out] VT
                    129: *> \verbatim
                    130: *>          VT is DOUBLE PRECISION array, dimension (LDVT, NCVT)
                    131: *>        On entry, contains a matrix which on exit has been
                    132: *>        premultiplied by P**T, dimension N-by-NCVT if SQRE = 0
                    133: *>        and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in] LDVT
                    137: *> \verbatim
                    138: *>          LDVT is INTEGER
                    139: *>        On entry, LDVT specifies the leading dimension of VT as
                    140: *>        declared in the calling (sub) program. LDVT must be at
                    141: *>        least 1. If NCVT is nonzero LDVT must also be at least N.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[in,out] U
                    145: *> \verbatim
                    146: *>          U is DOUBLE PRECISION array, dimension (LDU, N)
                    147: *>        On entry, contains a  matrix which on exit has been
                    148: *>        postmultiplied by Q, dimension NRU-by-N if SQRE = 0
                    149: *>        and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[in] LDU
                    153: *> \verbatim
                    154: *>          LDU is INTEGER
                    155: *>        On entry, LDU  specifies the leading dimension of U as
                    156: *>        declared in the calling (sub) program. LDU must be at
                    157: *>        least max( 1, NRU ) .
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[in,out] C
                    161: *> \verbatim
                    162: *>          C is DOUBLE PRECISION array, dimension (LDC, NCC)
                    163: *>        On entry, contains an N-by-NCC matrix which on exit
                    164: *>        has been premultiplied by Q**T  dimension N-by-NCC if SQRE = 0
                    165: *>        and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
                    166: *> \endverbatim
                    167: *>
                    168: *> \param[in] LDC
                    169: *> \verbatim
                    170: *>          LDC is INTEGER
                    171: *>        On entry, LDC  specifies the leading dimension of C as
                    172: *>        declared in the calling (sub) program. LDC must be at
                    173: *>        least 1. If NCC is nonzero, LDC must also be at least N.
                    174: *> \endverbatim
                    175: *>
                    176: *> \param[out] WORK
                    177: *> \verbatim
                    178: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
                    179: *>        Workspace. Only referenced if one of NCVT, NRU, or NCC is
                    180: *>        nonzero, and if N is at least 2.
                    181: *> \endverbatim
                    182: *>
                    183: *> \param[out] INFO
                    184: *> \verbatim
                    185: *>          INFO is INTEGER
                    186: *>        On exit, a value of 0 indicates a successful exit.
                    187: *>        If INFO < 0, argument number -INFO is illegal.
                    188: *>        If INFO > 0, the algorithm did not converge, and INFO
                    189: *>        specifies how many superdiagonals did not converge.
                    190: *> \endverbatim
                    191: *
                    192: *  Authors:
                    193: *  ========
                    194: *
1.17      bertrand  195: *> \author Univ. of Tennessee
                    196: *> \author Univ. of California Berkeley
                    197: *> \author Univ. of Colorado Denver
                    198: *> \author NAG Ltd.
1.9       bertrand  199: *
1.17      bertrand  200: *> \ingroup OTHERauxiliary
1.9       bertrand  201: *
                    202: *> \par Contributors:
                    203: *  ==================
                    204: *>
                    205: *>     Ming Gu and Huan Ren, Computer Science Division, University of
                    206: *>     California at Berkeley, USA
                    207: *>
                    208: *  =====================================================================
1.1       bertrand  209:       SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
                    210:      $                   U, LDU, C, LDC, WORK, INFO )
                    211: *
1.20    ! bertrand  212: *  -- LAPACK auxiliary routine --
1.1       bertrand  213: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    214: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    215: *
                    216: *     .. Scalar Arguments ..
                    217:       CHARACTER          UPLO
                    218:       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
                    219: *     ..
                    220: *     .. Array Arguments ..
                    221:       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
                    222:      $                   VT( LDVT, * ), WORK( * )
                    223: *     ..
                    224: *
                    225: *  =====================================================================
                    226: *
                    227: *     .. Parameters ..
                    228:       DOUBLE PRECISION   ZERO
                    229:       PARAMETER          ( ZERO = 0.0D+0 )
                    230: *     ..
                    231: *     .. Local Scalars ..
                    232:       LOGICAL            ROTATE
                    233:       INTEGER            I, ISUB, IUPLO, J, NP1, SQRE1
                    234:       DOUBLE PRECISION   CS, R, SMIN, SN
                    235: *     ..
                    236: *     .. External Subroutines ..
                    237:       EXTERNAL           DBDSQR, DLARTG, DLASR, DSWAP, XERBLA
                    238: *     ..
                    239: *     .. External Functions ..
                    240:       LOGICAL            LSAME
                    241:       EXTERNAL           LSAME
                    242: *     ..
                    243: *     .. Intrinsic Functions ..
                    244:       INTRINSIC          MAX
                    245: *     ..
                    246: *     .. Executable Statements ..
                    247: *
                    248: *     Test the input parameters.
                    249: *
                    250:       INFO = 0
                    251:       IUPLO = 0
                    252:       IF( LSAME( UPLO, 'U' ) )
                    253:      $   IUPLO = 1
                    254:       IF( LSAME( UPLO, 'L' ) )
                    255:      $   IUPLO = 2
                    256:       IF( IUPLO.EQ.0 ) THEN
                    257:          INFO = -1
                    258:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
                    259:          INFO = -2
                    260:       ELSE IF( N.LT.0 ) THEN
                    261:          INFO = -3
                    262:       ELSE IF( NCVT.LT.0 ) THEN
                    263:          INFO = -4
                    264:       ELSE IF( NRU.LT.0 ) THEN
                    265:          INFO = -5
                    266:       ELSE IF( NCC.LT.0 ) THEN
                    267:          INFO = -6
                    268:       ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
                    269:      $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
                    270:          INFO = -10
                    271:       ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
                    272:          INFO = -12
                    273:       ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
                    274:      $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
                    275:          INFO = -14
                    276:       END IF
                    277:       IF( INFO.NE.0 ) THEN
                    278:          CALL XERBLA( 'DLASDQ', -INFO )
                    279:          RETURN
                    280:       END IF
                    281:       IF( N.EQ.0 )
                    282:      $   RETURN
                    283: *
                    284: *     ROTATE is true if any singular vectors desired, false otherwise
                    285: *
                    286:       ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
                    287:       NP1 = N + 1
                    288:       SQRE1 = SQRE
                    289: *
                    290: *     If matrix non-square upper bidiagonal, rotate to be lower
                    291: *     bidiagonal.  The rotations are on the right.
                    292: *
                    293:       IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN
                    294:          DO 10 I = 1, N - 1
                    295:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
                    296:             D( I ) = R
                    297:             E( I ) = SN*D( I+1 )
                    298:             D( I+1 ) = CS*D( I+1 )
                    299:             IF( ROTATE ) THEN
                    300:                WORK( I ) = CS
                    301:                WORK( N+I ) = SN
                    302:             END IF
                    303:    10    CONTINUE
                    304:          CALL DLARTG( D( N ), E( N ), CS, SN, R )
                    305:          D( N ) = R
                    306:          E( N ) = ZERO
                    307:          IF( ROTATE ) THEN
                    308:             WORK( N ) = CS
                    309:             WORK( N+N ) = SN
                    310:          END IF
                    311:          IUPLO = 2
                    312:          SQRE1 = 0
                    313: *
                    314: *        Update singular vectors if desired.
                    315: *
                    316:          IF( NCVT.GT.0 )
                    317:      $      CALL DLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ),
                    318:      $                  WORK( NP1 ), VT, LDVT )
                    319:       END IF
                    320: *
                    321: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
                    322: *     by applying Givens rotations on the left.
                    323: *
                    324:       IF( IUPLO.EQ.2 ) THEN
                    325:          DO 20 I = 1, N - 1
                    326:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
                    327:             D( I ) = R
                    328:             E( I ) = SN*D( I+1 )
                    329:             D( I+1 ) = CS*D( I+1 )
                    330:             IF( ROTATE ) THEN
                    331:                WORK( I ) = CS
                    332:                WORK( N+I ) = SN
                    333:             END IF
                    334:    20    CONTINUE
                    335: *
                    336: *        If matrix (N+1)-by-N lower bidiagonal, one additional
                    337: *        rotation is needed.
                    338: *
                    339:          IF( SQRE1.EQ.1 ) THEN
                    340:             CALL DLARTG( D( N ), E( N ), CS, SN, R )
                    341:             D( N ) = R
                    342:             IF( ROTATE ) THEN
                    343:                WORK( N ) = CS
                    344:                WORK( N+N ) = SN
                    345:             END IF
                    346:          END IF
                    347: *
                    348: *        Update singular vectors if desired.
                    349: *
                    350:          IF( NRU.GT.0 ) THEN
                    351:             IF( SQRE1.EQ.0 ) THEN
                    352:                CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ),
                    353:      $                     WORK( NP1 ), U, LDU )
                    354:             ELSE
                    355:                CALL DLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ),
                    356:      $                     WORK( NP1 ), U, LDU )
                    357:             END IF
                    358:          END IF
                    359:          IF( NCC.GT.0 ) THEN
                    360:             IF( SQRE1.EQ.0 ) THEN
                    361:                CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ),
                    362:      $                     WORK( NP1 ), C, LDC )
                    363:             ELSE
                    364:                CALL DLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ),
                    365:      $                     WORK( NP1 ), C, LDC )
                    366:             END IF
                    367:          END IF
                    368:       END IF
                    369: *
                    370: *     Call DBDSQR to compute the SVD of the reduced real
                    371: *     N-by-N upper bidiagonal matrix.
                    372: *
                    373:       CALL DBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
                    374:      $             LDC, WORK, INFO )
                    375: *
                    376: *     Sort the singular values into ascending order (insertion sort on
                    377: *     singular values, but only one transposition per singular vector)
                    378: *
                    379:       DO 40 I = 1, N
                    380: *
                    381: *        Scan for smallest D(I).
                    382: *
                    383:          ISUB = I
                    384:          SMIN = D( I )
                    385:          DO 30 J = I + 1, N
                    386:             IF( D( J ).LT.SMIN ) THEN
                    387:                ISUB = J
                    388:                SMIN = D( J )
                    389:             END IF
                    390:    30    CONTINUE
                    391:          IF( ISUB.NE.I ) THEN
                    392: *
                    393: *           Swap singular values and vectors.
                    394: *
                    395:             D( ISUB ) = D( I )
                    396:             D( I ) = SMIN
                    397:             IF( NCVT.GT.0 )
                    398:      $         CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT )
                    399:             IF( NRU.GT.0 )
                    400:      $         CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 )
                    401:             IF( NCC.GT.0 )
                    402:      $         CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC )
                    403:          END IF
                    404:    40 CONTINUE
                    405: *
                    406:       RETURN
                    407: *
                    408: *     End of DLASDQ
                    409: *
                    410:       END

CVSweb interface <joel.bertrand@systella.fr>