Annotation of rpl/lapack/lapack/dlasdq.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
        !             2:      $                   U, LDU, C, LDC, WORK, INFO )
        !             3: *
        !             4: *  -- LAPACK auxiliary routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          UPLO
        !            11:       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
        !            15:      $                   VT( LDVT, * ), WORK( * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DLASDQ computes the singular value decomposition (SVD) of a real
        !            22: *  (upper or lower) bidiagonal matrix with diagonal D and offdiagonal
        !            23: *  E, accumulating the transformations if desired. Letting B denote
        !            24: *  the input bidiagonal matrix, the algorithm computes orthogonal
        !            25: *  matrices Q and P such that B = Q * S * P' (P' denotes the transpose
        !            26: *  of P). The singular values S are overwritten on D.
        !            27: *
        !            28: *  The input matrix U  is changed to U  * Q  if desired.
        !            29: *  The input matrix VT is changed to P' * VT if desired.
        !            30: *  The input matrix C  is changed to Q' * C  if desired.
        !            31: *
        !            32: *  See "Computing  Small Singular Values of Bidiagonal Matrices With
        !            33: *  Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
        !            34: *  LAPACK Working Note #3, for a detailed description of the algorithm.
        !            35: *
        !            36: *  Arguments
        !            37: *  =========
        !            38: *
        !            39: *  UPLO  (input) CHARACTER*1
        !            40: *        On entry, UPLO specifies whether the input bidiagonal matrix
        !            41: *        is upper or lower bidiagonal, and wether it is square are
        !            42: *        not.
        !            43: *           UPLO = 'U' or 'u'   B is upper bidiagonal.
        !            44: *           UPLO = 'L' or 'l'   B is lower bidiagonal.
        !            45: *
        !            46: *  SQRE  (input) INTEGER
        !            47: *        = 0: then the input matrix is N-by-N.
        !            48: *        = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
        !            49: *             (N+1)-by-N if UPLU = 'L'.
        !            50: *
        !            51: *        The bidiagonal matrix has
        !            52: *        N = NL + NR + 1 rows and
        !            53: *        M = N + SQRE >= N columns.
        !            54: *
        !            55: *  N     (input) INTEGER
        !            56: *        On entry, N specifies the number of rows and columns
        !            57: *        in the matrix. N must be at least 0.
        !            58: *
        !            59: *  NCVT  (input) INTEGER
        !            60: *        On entry, NCVT specifies the number of columns of
        !            61: *        the matrix VT. NCVT must be at least 0.
        !            62: *
        !            63: *  NRU   (input) INTEGER
        !            64: *        On entry, NRU specifies the number of rows of
        !            65: *        the matrix U. NRU must be at least 0.
        !            66: *
        !            67: *  NCC   (input) INTEGER
        !            68: *        On entry, NCC specifies the number of columns of
        !            69: *        the matrix C. NCC must be at least 0.
        !            70: *
        !            71: *  D     (input/output) DOUBLE PRECISION array, dimension (N)
        !            72: *        On entry, D contains the diagonal entries of the
        !            73: *        bidiagonal matrix whose SVD is desired. On normal exit,
        !            74: *        D contains the singular values in ascending order.
        !            75: *
        !            76: *  E     (input/output) DOUBLE PRECISION array.
        !            77: *        dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
        !            78: *        On entry, the entries of E contain the offdiagonal entries
        !            79: *        of the bidiagonal matrix whose SVD is desired. On normal
        !            80: *        exit, E will contain 0. If the algorithm does not converge,
        !            81: *        D and E will contain the diagonal and superdiagonal entries
        !            82: *        of a bidiagonal matrix orthogonally equivalent to the one
        !            83: *        given as input.
        !            84: *
        !            85: *  VT    (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
        !            86: *        On entry, contains a matrix which on exit has been
        !            87: *        premultiplied by P', dimension N-by-NCVT if SQRE = 0
        !            88: *        and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
        !            89: *
        !            90: *  LDVT  (input) INTEGER
        !            91: *        On entry, LDVT specifies the leading dimension of VT as
        !            92: *        declared in the calling (sub) program. LDVT must be at
        !            93: *        least 1. If NCVT is nonzero LDVT must also be at least N.
        !            94: *
        !            95: *  U     (input/output) DOUBLE PRECISION array, dimension (LDU, N)
        !            96: *        On entry, contains a  matrix which on exit has been
        !            97: *        postmultiplied by Q, dimension NRU-by-N if SQRE = 0
        !            98: *        and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
        !            99: *
        !           100: *  LDU   (input) INTEGER
        !           101: *        On entry, LDU  specifies the leading dimension of U as
        !           102: *        declared in the calling (sub) program. LDU must be at
        !           103: *        least max( 1, NRU ) .
        !           104: *
        !           105: *  C     (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
        !           106: *        On entry, contains an N-by-NCC matrix which on exit
        !           107: *        has been premultiplied by Q'  dimension N-by-NCC if SQRE = 0
        !           108: *        and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
        !           109: *
        !           110: *  LDC   (input) INTEGER
        !           111: *        On entry, LDC  specifies the leading dimension of C as
        !           112: *        declared in the calling (sub) program. LDC must be at
        !           113: *        least 1. If NCC is nonzero, LDC must also be at least N.
        !           114: *
        !           115: *  WORK  (workspace) DOUBLE PRECISION array, dimension (4*N)
        !           116: *        Workspace. Only referenced if one of NCVT, NRU, or NCC is
        !           117: *        nonzero, and if N is at least 2.
        !           118: *
        !           119: *  INFO  (output) INTEGER
        !           120: *        On exit, a value of 0 indicates a successful exit.
        !           121: *        If INFO < 0, argument number -INFO is illegal.
        !           122: *        If INFO > 0, the algorithm did not converge, and INFO
        !           123: *        specifies how many superdiagonals did not converge.
        !           124: *
        !           125: *  Further Details
        !           126: *  ===============
        !           127: *
        !           128: *  Based on contributions by
        !           129: *     Ming Gu and Huan Ren, Computer Science Division, University of
        !           130: *     California at Berkeley, USA
        !           131: *
        !           132: *  =====================================================================
        !           133: *
        !           134: *     .. Parameters ..
        !           135:       DOUBLE PRECISION   ZERO
        !           136:       PARAMETER          ( ZERO = 0.0D+0 )
        !           137: *     ..
        !           138: *     .. Local Scalars ..
        !           139:       LOGICAL            ROTATE
        !           140:       INTEGER            I, ISUB, IUPLO, J, NP1, SQRE1
        !           141:       DOUBLE PRECISION   CS, R, SMIN, SN
        !           142: *     ..
        !           143: *     .. External Subroutines ..
        !           144:       EXTERNAL           DBDSQR, DLARTG, DLASR, DSWAP, XERBLA
        !           145: *     ..
        !           146: *     .. External Functions ..
        !           147:       LOGICAL            LSAME
        !           148:       EXTERNAL           LSAME
        !           149: *     ..
        !           150: *     .. Intrinsic Functions ..
        !           151:       INTRINSIC          MAX
        !           152: *     ..
        !           153: *     .. Executable Statements ..
        !           154: *
        !           155: *     Test the input parameters.
        !           156: *
        !           157:       INFO = 0
        !           158:       IUPLO = 0
        !           159:       IF( LSAME( UPLO, 'U' ) )
        !           160:      $   IUPLO = 1
        !           161:       IF( LSAME( UPLO, 'L' ) )
        !           162:      $   IUPLO = 2
        !           163:       IF( IUPLO.EQ.0 ) THEN
        !           164:          INFO = -1
        !           165:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
        !           166:          INFO = -2
        !           167:       ELSE IF( N.LT.0 ) THEN
        !           168:          INFO = -3
        !           169:       ELSE IF( NCVT.LT.0 ) THEN
        !           170:          INFO = -4
        !           171:       ELSE IF( NRU.LT.0 ) THEN
        !           172:          INFO = -5
        !           173:       ELSE IF( NCC.LT.0 ) THEN
        !           174:          INFO = -6
        !           175:       ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
        !           176:      $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
        !           177:          INFO = -10
        !           178:       ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
        !           179:          INFO = -12
        !           180:       ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
        !           181:      $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
        !           182:          INFO = -14
        !           183:       END IF
        !           184:       IF( INFO.NE.0 ) THEN
        !           185:          CALL XERBLA( 'DLASDQ', -INFO )
        !           186:          RETURN
        !           187:       END IF
        !           188:       IF( N.EQ.0 )
        !           189:      $   RETURN
        !           190: *
        !           191: *     ROTATE is true if any singular vectors desired, false otherwise
        !           192: *
        !           193:       ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
        !           194:       NP1 = N + 1
        !           195:       SQRE1 = SQRE
        !           196: *
        !           197: *     If matrix non-square upper bidiagonal, rotate to be lower
        !           198: *     bidiagonal.  The rotations are on the right.
        !           199: *
        !           200:       IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN
        !           201:          DO 10 I = 1, N - 1
        !           202:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
        !           203:             D( I ) = R
        !           204:             E( I ) = SN*D( I+1 )
        !           205:             D( I+1 ) = CS*D( I+1 )
        !           206:             IF( ROTATE ) THEN
        !           207:                WORK( I ) = CS
        !           208:                WORK( N+I ) = SN
        !           209:             END IF
        !           210:    10    CONTINUE
        !           211:          CALL DLARTG( D( N ), E( N ), CS, SN, R )
        !           212:          D( N ) = R
        !           213:          E( N ) = ZERO
        !           214:          IF( ROTATE ) THEN
        !           215:             WORK( N ) = CS
        !           216:             WORK( N+N ) = SN
        !           217:          END IF
        !           218:          IUPLO = 2
        !           219:          SQRE1 = 0
        !           220: *
        !           221: *        Update singular vectors if desired.
        !           222: *
        !           223:          IF( NCVT.GT.0 )
        !           224:      $      CALL DLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ),
        !           225:      $                  WORK( NP1 ), VT, LDVT )
        !           226:       END IF
        !           227: *
        !           228: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
        !           229: *     by applying Givens rotations on the left.
        !           230: *
        !           231:       IF( IUPLO.EQ.2 ) THEN
        !           232:          DO 20 I = 1, N - 1
        !           233:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
        !           234:             D( I ) = R
        !           235:             E( I ) = SN*D( I+1 )
        !           236:             D( I+1 ) = CS*D( I+1 )
        !           237:             IF( ROTATE ) THEN
        !           238:                WORK( I ) = CS
        !           239:                WORK( N+I ) = SN
        !           240:             END IF
        !           241:    20    CONTINUE
        !           242: *
        !           243: *        If matrix (N+1)-by-N lower bidiagonal, one additional
        !           244: *        rotation is needed.
        !           245: *
        !           246:          IF( SQRE1.EQ.1 ) THEN
        !           247:             CALL DLARTG( D( N ), E( N ), CS, SN, R )
        !           248:             D( N ) = R
        !           249:             IF( ROTATE ) THEN
        !           250:                WORK( N ) = CS
        !           251:                WORK( N+N ) = SN
        !           252:             END IF
        !           253:          END IF
        !           254: *
        !           255: *        Update singular vectors if desired.
        !           256: *
        !           257:          IF( NRU.GT.0 ) THEN
        !           258:             IF( SQRE1.EQ.0 ) THEN
        !           259:                CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ),
        !           260:      $                     WORK( NP1 ), U, LDU )
        !           261:             ELSE
        !           262:                CALL DLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ),
        !           263:      $                     WORK( NP1 ), U, LDU )
        !           264:             END IF
        !           265:          END IF
        !           266:          IF( NCC.GT.0 ) THEN
        !           267:             IF( SQRE1.EQ.0 ) THEN
        !           268:                CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ),
        !           269:      $                     WORK( NP1 ), C, LDC )
        !           270:             ELSE
        !           271:                CALL DLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ),
        !           272:      $                     WORK( NP1 ), C, LDC )
        !           273:             END IF
        !           274:          END IF
        !           275:       END IF
        !           276: *
        !           277: *     Call DBDSQR to compute the SVD of the reduced real
        !           278: *     N-by-N upper bidiagonal matrix.
        !           279: *
        !           280:       CALL DBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
        !           281:      $             LDC, WORK, INFO )
        !           282: *
        !           283: *     Sort the singular values into ascending order (insertion sort on
        !           284: *     singular values, but only one transposition per singular vector)
        !           285: *
        !           286:       DO 40 I = 1, N
        !           287: *
        !           288: *        Scan for smallest D(I).
        !           289: *
        !           290:          ISUB = I
        !           291:          SMIN = D( I )
        !           292:          DO 30 J = I + 1, N
        !           293:             IF( D( J ).LT.SMIN ) THEN
        !           294:                ISUB = J
        !           295:                SMIN = D( J )
        !           296:             END IF
        !           297:    30    CONTINUE
        !           298:          IF( ISUB.NE.I ) THEN
        !           299: *
        !           300: *           Swap singular values and vectors.
        !           301: *
        !           302:             D( ISUB ) = D( I )
        !           303:             D( I ) = SMIN
        !           304:             IF( NCVT.GT.0 )
        !           305:      $         CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT )
        !           306:             IF( NRU.GT.0 )
        !           307:      $         CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 )
        !           308:             IF( NCC.GT.0 )
        !           309:      $         CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC )
        !           310:          END IF
        !           311:    40 CONTINUE
        !           312: *
        !           313:       RETURN
        !           314: *
        !           315: *     End of DLASDQ
        !           316: *
        !           317:       END

CVSweb interface <joel.bertrand@systella.fr>