File:  [local] / rpl / lapack / lapack / dlasda.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:08 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
    2:      $                   DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
    3:      $                   PERM, GIVNUM, C, S, WORK, IWORK, INFO )
    4: *
    5: *  -- LAPACK auxiliary routine (version 3.2.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     June 2010
    9: *
   10: *     .. Scalar Arguments ..
   11:       INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
   12: *     ..
   13: *     .. Array Arguments ..
   14:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
   15:      $                   K( * ), PERM( LDGCOL, * )
   16:       DOUBLE PRECISION   C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
   17:      $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
   18:      $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
   19:      $                   Z( LDU, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  Using a divide and conquer approach, DLASDA computes the singular
   26: *  value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
   27: *  B with diagonal D and offdiagonal E, where M = N + SQRE. The
   28: *  algorithm computes the singular values in the SVD B = U * S * VT.
   29: *  The orthogonal matrices U and VT are optionally computed in
   30: *  compact form.
   31: *
   32: *  A related subroutine, DLASD0, computes the singular values and
   33: *  the singular vectors in explicit form.
   34: *
   35: *  Arguments
   36: *  =========
   37: *
   38: *  ICOMPQ (input) INTEGER
   39: *         Specifies whether singular vectors are to be computed
   40: *         in compact form, as follows
   41: *         = 0: Compute singular values only.
   42: *         = 1: Compute singular vectors of upper bidiagonal
   43: *              matrix in compact form.
   44: *
   45: *  SMLSIZ (input) INTEGER
   46: *         The maximum size of the subproblems at the bottom of the
   47: *         computation tree.
   48: *
   49: *  N      (input) INTEGER
   50: *         The row dimension of the upper bidiagonal matrix. This is
   51: *         also the dimension of the main diagonal array D.
   52: *
   53: *  SQRE   (input) INTEGER
   54: *         Specifies the column dimension of the bidiagonal matrix.
   55: *         = 0: The bidiagonal matrix has column dimension M = N;
   56: *         = 1: The bidiagonal matrix has column dimension M = N + 1.
   57: *
   58: *  D      (input/output) DOUBLE PRECISION array, dimension ( N )
   59: *         On entry D contains the main diagonal of the bidiagonal
   60: *         matrix. On exit D, if INFO = 0, contains its singular values.
   61: *
   62: *  E      (input) DOUBLE PRECISION array, dimension ( M-1 )
   63: *         Contains the subdiagonal entries of the bidiagonal matrix.
   64: *         On exit, E has been destroyed.
   65: *
   66: *  U      (output) DOUBLE PRECISION array,
   67: *         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
   68: *         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
   69: *         singular vector matrices of all subproblems at the bottom
   70: *         level.
   71: *
   72: *  LDU    (input) INTEGER, LDU = > N.
   73: *         The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
   74: *         GIVNUM, and Z.
   75: *
   76: *  VT     (output) DOUBLE PRECISION array,
   77: *         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
   78: *         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right
   79: *         singular vector matrices of all subproblems at the bottom
   80: *         level.
   81: *
   82: *  K      (output) INTEGER array,
   83: *         dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
   84: *         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
   85: *         secular equation on the computation tree.
   86: *
   87: *  DIFL   (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ),
   88: *         where NLVL = floor(log_2 (N/SMLSIZ))).
   89: *
   90: *  DIFR   (output) DOUBLE PRECISION array,
   91: *                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
   92: *                  dimension ( N ) if ICOMPQ = 0.
   93: *         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
   94: *         record distances between singular values on the I-th
   95: *         level and singular values on the (I -1)-th level, and
   96: *         DIFR(1:N, 2 * I ) contains the normalizing factors for
   97: *         the right singular vector matrix. See DLASD8 for details.
   98: *
   99: *  Z      (output) DOUBLE PRECISION array,
  100: *                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and
  101: *                  dimension ( N ) if ICOMPQ = 0.
  102: *         The first K elements of Z(1, I) contain the components of
  103: *         the deflation-adjusted updating row vector for subproblems
  104: *         on the I-th level.
  105: *
  106: *  POLES  (output) DOUBLE PRECISION array,
  107: *         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
  108: *         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
  109: *         POLES(1, 2*I) contain  the new and old singular values
  110: *         involved in the secular equations on the I-th level.
  111: *
  112: *  GIVPTR (output) INTEGER array,
  113: *         dimension ( N ) if ICOMPQ = 1, and not referenced if
  114: *         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
  115: *         the number of Givens rotations performed on the I-th
  116: *         problem on the computation tree.
  117: *
  118: *  GIVCOL (output) INTEGER array,
  119: *         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
  120: *         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
  121: *         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
  122: *         of Givens rotations performed on the I-th level on the
  123: *         computation tree.
  124: *
  125: *  LDGCOL (input) INTEGER, LDGCOL = > N.
  126: *         The leading dimension of arrays GIVCOL and PERM.
  127: *
  128: *  PERM   (output) INTEGER array,
  129: *         dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
  130: *         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
  131: *         permutations done on the I-th level of the computation tree.
  132: *
  133: *  GIVNUM (output) DOUBLE PRECISION array,
  134: *         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not
  135: *         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
  136: *         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
  137: *         values of Givens rotations performed on the I-th level on
  138: *         the computation tree.
  139: *
  140: *  C      (output) DOUBLE PRECISION array,
  141: *         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
  142: *         If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
  143: *         C( I ) contains the C-value of a Givens rotation related to
  144: *         the right null space of the I-th subproblem.
  145: *
  146: *  S      (output) DOUBLE PRECISION array, dimension ( N ) if
  147: *         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
  148: *         and the I-th subproblem is not square, on exit, S( I )
  149: *         contains the S-value of a Givens rotation related to
  150: *         the right null space of the I-th subproblem.
  151: *
  152: *  WORK   (workspace) DOUBLE PRECISION array, dimension
  153: *         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
  154: *
  155: *  IWORK  (workspace) INTEGER array.
  156: *         Dimension must be at least (7 * N).
  157: *
  158: *  INFO   (output) INTEGER
  159: *          = 0:  successful exit.
  160: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  161: *          > 0:  if INFO = 1, a singular value did not converge
  162: *
  163: *  Further Details
  164: *  ===============
  165: *
  166: *  Based on contributions by
  167: *     Ming Gu and Huan Ren, Computer Science Division, University of
  168: *     California at Berkeley, USA
  169: *
  170: *  =====================================================================
  171: *
  172: *     .. Parameters ..
  173:       DOUBLE PRECISION   ZERO, ONE
  174:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  175: *     ..
  176: *     .. Local Scalars ..
  177:       INTEGER            I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK,
  178:      $                   J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML,
  179:      $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU,
  180:      $                   NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
  181:       DOUBLE PRECISION   ALPHA, BETA
  182: *     ..
  183: *     .. External Subroutines ..
  184:       EXTERNAL           DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, XERBLA
  185: *     ..
  186: *     .. Executable Statements ..
  187: *
  188: *     Test the input parameters.
  189: *
  190:       INFO = 0
  191: *
  192:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
  193:          INFO = -1
  194:       ELSE IF( SMLSIZ.LT.3 ) THEN
  195:          INFO = -2
  196:       ELSE IF( N.LT.0 ) THEN
  197:          INFO = -3
  198:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
  199:          INFO = -4
  200:       ELSE IF( LDU.LT.( N+SQRE ) ) THEN
  201:          INFO = -8
  202:       ELSE IF( LDGCOL.LT.N ) THEN
  203:          INFO = -17
  204:       END IF
  205:       IF( INFO.NE.0 ) THEN
  206:          CALL XERBLA( 'DLASDA', -INFO )
  207:          RETURN
  208:       END IF
  209: *
  210:       M = N + SQRE
  211: *
  212: *     If the input matrix is too small, call DLASDQ to find the SVD.
  213: *
  214:       IF( N.LE.SMLSIZ ) THEN
  215:          IF( ICOMPQ.EQ.0 ) THEN
  216:             CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU,
  217:      $                   U, LDU, WORK, INFO )
  218:          ELSE
  219:             CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU,
  220:      $                   U, LDU, WORK, INFO )
  221:          END IF
  222:          RETURN
  223:       END IF
  224: *
  225: *     Book-keeping and  set up the computation tree.
  226: *
  227:       INODE = 1
  228:       NDIML = INODE + N
  229:       NDIMR = NDIML + N
  230:       IDXQ = NDIMR + N
  231:       IWK = IDXQ + N
  232: *
  233:       NCC = 0
  234:       NRU = 0
  235: *
  236:       SMLSZP = SMLSIZ + 1
  237:       VF = 1
  238:       VL = VF + M
  239:       NWORK1 = VL + M
  240:       NWORK2 = NWORK1 + SMLSZP*SMLSZP
  241: *
  242:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
  243:      $             IWORK( NDIMR ), SMLSIZ )
  244: *
  245: *     for the nodes on bottom level of the tree, solve
  246: *     their subproblems by DLASDQ.
  247: *
  248:       NDB1 = ( ND+1 ) / 2
  249:       DO 30 I = NDB1, ND
  250: *
  251: *        IC : center row of each node
  252: *        NL : number of rows of left  subproblem
  253: *        NR : number of rows of right subproblem
  254: *        NLF: starting row of the left   subproblem
  255: *        NRF: starting row of the right  subproblem
  256: *
  257:          I1 = I - 1
  258:          IC = IWORK( INODE+I1 )
  259:          NL = IWORK( NDIML+I1 )
  260:          NLP1 = NL + 1
  261:          NR = IWORK( NDIMR+I1 )
  262:          NLF = IC - NL
  263:          NRF = IC + 1
  264:          IDXQI = IDXQ + NLF - 2
  265:          VFI = VF + NLF - 1
  266:          VLI = VL + NLF - 1
  267:          SQREI = 1
  268:          IF( ICOMPQ.EQ.0 ) THEN
  269:             CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ),
  270:      $                   SMLSZP )
  271:             CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ),
  272:      $                   E( NLF ), WORK( NWORK1 ), SMLSZP,
  273:      $                   WORK( NWORK2 ), NL, WORK( NWORK2 ), NL,
  274:      $                   WORK( NWORK2 ), INFO )
  275:             ITEMP = NWORK1 + NL*SMLSZP
  276:             CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
  277:             CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
  278:          ELSE
  279:             CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
  280:             CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
  281:             CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ),
  282:      $                   E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU,
  283:      $                   U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
  284:             CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
  285:             CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
  286:          END IF
  287:          IF( INFO.NE.0 ) THEN
  288:             RETURN
  289:          END IF
  290:          DO 10 J = 1, NL
  291:             IWORK( IDXQI+J ) = J
  292:    10    CONTINUE
  293:          IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
  294:             SQREI = 0
  295:          ELSE
  296:             SQREI = 1
  297:          END IF
  298:          IDXQI = IDXQI + NLP1
  299:          VFI = VFI + NLP1
  300:          VLI = VLI + NLP1
  301:          NRP1 = NR + SQREI
  302:          IF( ICOMPQ.EQ.0 ) THEN
  303:             CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ),
  304:      $                   SMLSZP )
  305:             CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ),
  306:      $                   E( NRF ), WORK( NWORK1 ), SMLSZP,
  307:      $                   WORK( NWORK2 ), NR, WORK( NWORK2 ), NR,
  308:      $                   WORK( NWORK2 ), INFO )
  309:             ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
  310:             CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
  311:             CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
  312:          ELSE
  313:             CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
  314:             CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
  315:             CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ),
  316:      $                   E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU,
  317:      $                   U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
  318:             CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
  319:             CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
  320:          END IF
  321:          IF( INFO.NE.0 ) THEN
  322:             RETURN
  323:          END IF
  324:          DO 20 J = 1, NR
  325:             IWORK( IDXQI+J ) = J
  326:    20    CONTINUE
  327:    30 CONTINUE
  328: *
  329: *     Now conquer each subproblem bottom-up.
  330: *
  331:       J = 2**NLVL
  332:       DO 50 LVL = NLVL, 1, -1
  333:          LVL2 = LVL*2 - 1
  334: *
  335: *        Find the first node LF and last node LL on
  336: *        the current level LVL.
  337: *
  338:          IF( LVL.EQ.1 ) THEN
  339:             LF = 1
  340:             LL = 1
  341:          ELSE
  342:             LF = 2**( LVL-1 )
  343:             LL = 2*LF - 1
  344:          END IF
  345:          DO 40 I = LF, LL
  346:             IM1 = I - 1
  347:             IC = IWORK( INODE+IM1 )
  348:             NL = IWORK( NDIML+IM1 )
  349:             NR = IWORK( NDIMR+IM1 )
  350:             NLF = IC - NL
  351:             NRF = IC + 1
  352:             IF( I.EQ.LL ) THEN
  353:                SQREI = SQRE
  354:             ELSE
  355:                SQREI = 1
  356:             END IF
  357:             VFI = VF + NLF - 1
  358:             VLI = VL + NLF - 1
  359:             IDXQI = IDXQ + NLF - 1
  360:             ALPHA = D( IC )
  361:             BETA = E( IC )
  362:             IF( ICOMPQ.EQ.0 ) THEN
  363:                CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
  364:      $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
  365:      $                      IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL,
  366:      $                      LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z,
  367:      $                      K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ),
  368:      $                      IWORK( IWK ), INFO )
  369:             ELSE
  370:                J = J - 1
  371:                CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
  372:      $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
  373:      $                      IWORK( IDXQI ), PERM( NLF, LVL ),
  374:      $                      GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
  375:      $                      GIVNUM( NLF, LVL2 ), LDU,
  376:      $                      POLES( NLF, LVL2 ), DIFL( NLF, LVL ),
  377:      $                      DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ),
  378:      $                      C( J ), S( J ), WORK( NWORK1 ),
  379:      $                      IWORK( IWK ), INFO )
  380:             END IF
  381:             IF( INFO.NE.0 ) THEN
  382:                RETURN
  383:             END IF
  384:    40    CONTINUE
  385:    50 CONTINUE
  386: *
  387:       RETURN
  388: *
  389: *     End of DLASDA
  390: *
  391:       END

CVSweb interface <joel.bertrand@systella.fr>