File:  [local] / rpl / lapack / lapack / dlasda.f
Revision 1.21: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:59 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLASDA + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasda.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasda.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasda.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
   22: *                          DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
   23: *                          PERM, GIVNUM, C, S, WORK, IWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
   30: *      $                   K( * ), PERM( LDGCOL, * )
   31: *       DOUBLE PRECISION   C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
   32: *      $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
   33: *      $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
   34: *      $                   Z( LDU, * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> Using a divide and conquer approach, DLASDA computes the singular
   44: *> value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
   45: *> B with diagonal D and offdiagonal E, where M = N + SQRE. The
   46: *> algorithm computes the singular values in the SVD B = U * S * VT.
   47: *> The orthogonal matrices U and VT are optionally computed in
   48: *> compact form.
   49: *>
   50: *> A related subroutine, DLASD0, computes the singular values and
   51: *> the singular vectors in explicit form.
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] ICOMPQ
   58: *> \verbatim
   59: *>          ICOMPQ is INTEGER
   60: *>         Specifies whether singular vectors are to be computed
   61: *>         in compact form, as follows
   62: *>         = 0: Compute singular values only.
   63: *>         = 1: Compute singular vectors of upper bidiagonal
   64: *>              matrix in compact form.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] SMLSIZ
   68: *> \verbatim
   69: *>          SMLSIZ is INTEGER
   70: *>         The maximum size of the subproblems at the bottom of the
   71: *>         computation tree.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N
   75: *> \verbatim
   76: *>          N is INTEGER
   77: *>         The row dimension of the upper bidiagonal matrix. This is
   78: *>         also the dimension of the main diagonal array D.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] SQRE
   82: *> \verbatim
   83: *>          SQRE is INTEGER
   84: *>         Specifies the column dimension of the bidiagonal matrix.
   85: *>         = 0: The bidiagonal matrix has column dimension M = N;
   86: *>         = 1: The bidiagonal matrix has column dimension M = N + 1.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] D
   90: *> \verbatim
   91: *>          D is DOUBLE PRECISION array, dimension ( N )
   92: *>         On entry D contains the main diagonal of the bidiagonal
   93: *>         matrix. On exit D, if INFO = 0, contains its singular values.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] E
   97: *> \verbatim
   98: *>          E is DOUBLE PRECISION array, dimension ( M-1 )
   99: *>         Contains the subdiagonal entries of the bidiagonal matrix.
  100: *>         On exit, E has been destroyed.
  101: *> \endverbatim
  102: *>
  103: *> \param[out] U
  104: *> \verbatim
  105: *>          U is DOUBLE PRECISION array,
  106: *>         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
  107: *>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
  108: *>         singular vector matrices of all subproblems at the bottom
  109: *>         level.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDU
  113: *> \verbatim
  114: *>          LDU is INTEGER, LDU = > N.
  115: *>         The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
  116: *>         GIVNUM, and Z.
  117: *> \endverbatim
  118: *>
  119: *> \param[out] VT
  120: *> \verbatim
  121: *>          VT is DOUBLE PRECISION array,
  122: *>         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
  123: *>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right
  124: *>         singular vector matrices of all subproblems at the bottom
  125: *>         level.
  126: *> \endverbatim
  127: *>
  128: *> \param[out] K
  129: *> \verbatim
  130: *>          K is INTEGER array,
  131: *>         dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
  132: *>         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
  133: *>         secular equation on the computation tree.
  134: *> \endverbatim
  135: *>
  136: *> \param[out] DIFL
  137: *> \verbatim
  138: *>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ),
  139: *>         where NLVL = floor(log_2 (N/SMLSIZ))).
  140: *> \endverbatim
  141: *>
  142: *> \param[out] DIFR
  143: *> \verbatim
  144: *>          DIFR is DOUBLE PRECISION array,
  145: *>                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
  146: *>                  dimension ( N ) if ICOMPQ = 0.
  147: *>         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
  148: *>         record distances between singular values on the I-th
  149: *>         level and singular values on the (I -1)-th level, and
  150: *>         DIFR(1:N, 2 * I ) contains the normalizing factors for
  151: *>         the right singular vector matrix. See DLASD8 for details.
  152: *> \endverbatim
  153: *>
  154: *> \param[out] Z
  155: *> \verbatim
  156: *>          Z is DOUBLE PRECISION array,
  157: *>                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and
  158: *>                  dimension ( N ) if ICOMPQ = 0.
  159: *>         The first K elements of Z(1, I) contain the components of
  160: *>         the deflation-adjusted updating row vector for subproblems
  161: *>         on the I-th level.
  162: *> \endverbatim
  163: *>
  164: *> \param[out] POLES
  165: *> \verbatim
  166: *>          POLES is DOUBLE PRECISION array,
  167: *>         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
  168: *>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
  169: *>         POLES(1, 2*I) contain  the new and old singular values
  170: *>         involved in the secular equations on the I-th level.
  171: *> \endverbatim
  172: *>
  173: *> \param[out] GIVPTR
  174: *> \verbatim
  175: *>          GIVPTR is INTEGER array,
  176: *>         dimension ( N ) if ICOMPQ = 1, and not referenced if
  177: *>         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
  178: *>         the number of Givens rotations performed on the I-th
  179: *>         problem on the computation tree.
  180: *> \endverbatim
  181: *>
  182: *> \param[out] GIVCOL
  183: *> \verbatim
  184: *>          GIVCOL is INTEGER array,
  185: *>         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
  186: *>         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
  187: *>         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
  188: *>         of Givens rotations performed on the I-th level on the
  189: *>         computation tree.
  190: *> \endverbatim
  191: *>
  192: *> \param[in] LDGCOL
  193: *> \verbatim
  194: *>          LDGCOL is INTEGER, LDGCOL = > N.
  195: *>         The leading dimension of arrays GIVCOL and PERM.
  196: *> \endverbatim
  197: *>
  198: *> \param[out] PERM
  199: *> \verbatim
  200: *>          PERM is INTEGER array,
  201: *>         dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
  202: *>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
  203: *>         permutations done on the I-th level of the computation tree.
  204: *> \endverbatim
  205: *>
  206: *> \param[out] GIVNUM
  207: *> \verbatim
  208: *>          GIVNUM is DOUBLE PRECISION array,
  209: *>         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not
  210: *>         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
  211: *>         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
  212: *>         values of Givens rotations performed on the I-th level on
  213: *>         the computation tree.
  214: *> \endverbatim
  215: *>
  216: *> \param[out] C
  217: *> \verbatim
  218: *>          C is DOUBLE PRECISION array,
  219: *>         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
  220: *>         If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
  221: *>         C( I ) contains the C-value of a Givens rotation related to
  222: *>         the right null space of the I-th subproblem.
  223: *> \endverbatim
  224: *>
  225: *> \param[out] S
  226: *> \verbatim
  227: *>          S is DOUBLE PRECISION array, dimension ( N ) if
  228: *>         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
  229: *>         and the I-th subproblem is not square, on exit, S( I )
  230: *>         contains the S-value of a Givens rotation related to
  231: *>         the right null space of the I-th subproblem.
  232: *> \endverbatim
  233: *>
  234: *> \param[out] WORK
  235: *> \verbatim
  236: *>          WORK is DOUBLE PRECISION array, dimension
  237: *>         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
  238: *> \endverbatim
  239: *>
  240: *> \param[out] IWORK
  241: *> \verbatim
  242: *>          IWORK is INTEGER array, dimension (7*N)
  243: *> \endverbatim
  244: *>
  245: *> \param[out] INFO
  246: *> \verbatim
  247: *>          INFO is INTEGER
  248: *>          = 0:  successful exit.
  249: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  250: *>          > 0:  if INFO = 1, a singular value did not converge
  251: *> \endverbatim
  252: *
  253: *  Authors:
  254: *  ========
  255: *
  256: *> \author Univ. of Tennessee
  257: *> \author Univ. of California Berkeley
  258: *> \author Univ. of Colorado Denver
  259: *> \author NAG Ltd.
  260: *
  261: *> \ingroup OTHERauxiliary
  262: *
  263: *> \par Contributors:
  264: *  ==================
  265: *>
  266: *>     Ming Gu and Huan Ren, Computer Science Division, University of
  267: *>     California at Berkeley, USA
  268: *>
  269: *  =====================================================================
  270:       SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
  271:      $                   DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
  272:      $                   PERM, GIVNUM, C, S, WORK, IWORK, INFO )
  273: *
  274: *  -- LAPACK auxiliary routine --
  275: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  276: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  277: *
  278: *     .. Scalar Arguments ..
  279:       INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
  280: *     ..
  281: *     .. Array Arguments ..
  282:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
  283:      $                   K( * ), PERM( LDGCOL, * )
  284:       DOUBLE PRECISION   C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
  285:      $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
  286:      $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
  287:      $                   Z( LDU, * )
  288: *     ..
  289: *
  290: *  =====================================================================
  291: *
  292: *     .. Parameters ..
  293:       DOUBLE PRECISION   ZERO, ONE
  294:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  295: *     ..
  296: *     .. Local Scalars ..
  297:       INTEGER            I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK,
  298:      $                   J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML,
  299:      $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU,
  300:      $                   NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
  301:       DOUBLE PRECISION   ALPHA, BETA
  302: *     ..
  303: *     .. External Subroutines ..
  304:       EXTERNAL           DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, XERBLA
  305: *     ..
  306: *     .. Executable Statements ..
  307: *
  308: *     Test the input parameters.
  309: *
  310:       INFO = 0
  311: *
  312:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
  313:          INFO = -1
  314:       ELSE IF( SMLSIZ.LT.3 ) THEN
  315:          INFO = -2
  316:       ELSE IF( N.LT.0 ) THEN
  317:          INFO = -3
  318:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
  319:          INFO = -4
  320:       ELSE IF( LDU.LT.( N+SQRE ) ) THEN
  321:          INFO = -8
  322:       ELSE IF( LDGCOL.LT.N ) THEN
  323:          INFO = -17
  324:       END IF
  325:       IF( INFO.NE.0 ) THEN
  326:          CALL XERBLA( 'DLASDA', -INFO )
  327:          RETURN
  328:       END IF
  329: *
  330:       M = N + SQRE
  331: *
  332: *     If the input matrix is too small, call DLASDQ to find the SVD.
  333: *
  334:       IF( N.LE.SMLSIZ ) THEN
  335:          IF( ICOMPQ.EQ.0 ) THEN
  336:             CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU,
  337:      $                   U, LDU, WORK, INFO )
  338:          ELSE
  339:             CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU,
  340:      $                   U, LDU, WORK, INFO )
  341:          END IF
  342:          RETURN
  343:       END IF
  344: *
  345: *     Book-keeping and  set up the computation tree.
  346: *
  347:       INODE = 1
  348:       NDIML = INODE + N
  349:       NDIMR = NDIML + N
  350:       IDXQ = NDIMR + N
  351:       IWK = IDXQ + N
  352: *
  353:       NCC = 0
  354:       NRU = 0
  355: *
  356:       SMLSZP = SMLSIZ + 1
  357:       VF = 1
  358:       VL = VF + M
  359:       NWORK1 = VL + M
  360:       NWORK2 = NWORK1 + SMLSZP*SMLSZP
  361: *
  362:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
  363:      $             IWORK( NDIMR ), SMLSIZ )
  364: *
  365: *     for the nodes on bottom level of the tree, solve
  366: *     their subproblems by DLASDQ.
  367: *
  368:       NDB1 = ( ND+1 ) / 2
  369:       DO 30 I = NDB1, ND
  370: *
  371: *        IC : center row of each node
  372: *        NL : number of rows of left  subproblem
  373: *        NR : number of rows of right subproblem
  374: *        NLF: starting row of the left   subproblem
  375: *        NRF: starting row of the right  subproblem
  376: *
  377:          I1 = I - 1
  378:          IC = IWORK( INODE+I1 )
  379:          NL = IWORK( NDIML+I1 )
  380:          NLP1 = NL + 1
  381:          NR = IWORK( NDIMR+I1 )
  382:          NLF = IC - NL
  383:          NRF = IC + 1
  384:          IDXQI = IDXQ + NLF - 2
  385:          VFI = VF + NLF - 1
  386:          VLI = VL + NLF - 1
  387:          SQREI = 1
  388:          IF( ICOMPQ.EQ.0 ) THEN
  389:             CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ),
  390:      $                   SMLSZP )
  391:             CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ),
  392:      $                   E( NLF ), WORK( NWORK1 ), SMLSZP,
  393:      $                   WORK( NWORK2 ), NL, WORK( NWORK2 ), NL,
  394:      $                   WORK( NWORK2 ), INFO )
  395:             ITEMP = NWORK1 + NL*SMLSZP
  396:             CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
  397:             CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
  398:          ELSE
  399:             CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
  400:             CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
  401:             CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ),
  402:      $                   E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU,
  403:      $                   U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
  404:             CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
  405:             CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
  406:          END IF
  407:          IF( INFO.NE.0 ) THEN
  408:             RETURN
  409:          END IF
  410:          DO 10 J = 1, NL
  411:             IWORK( IDXQI+J ) = J
  412:    10    CONTINUE
  413:          IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
  414:             SQREI = 0
  415:          ELSE
  416:             SQREI = 1
  417:          END IF
  418:          IDXQI = IDXQI + NLP1
  419:          VFI = VFI + NLP1
  420:          VLI = VLI + NLP1
  421:          NRP1 = NR + SQREI
  422:          IF( ICOMPQ.EQ.0 ) THEN
  423:             CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ),
  424:      $                   SMLSZP )
  425:             CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ),
  426:      $                   E( NRF ), WORK( NWORK1 ), SMLSZP,
  427:      $                   WORK( NWORK2 ), NR, WORK( NWORK2 ), NR,
  428:      $                   WORK( NWORK2 ), INFO )
  429:             ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
  430:             CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
  431:             CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
  432:          ELSE
  433:             CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
  434:             CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
  435:             CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ),
  436:      $                   E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU,
  437:      $                   U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
  438:             CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
  439:             CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
  440:          END IF
  441:          IF( INFO.NE.0 ) THEN
  442:             RETURN
  443:          END IF
  444:          DO 20 J = 1, NR
  445:             IWORK( IDXQI+J ) = J
  446:    20    CONTINUE
  447:    30 CONTINUE
  448: *
  449: *     Now conquer each subproblem bottom-up.
  450: *
  451:       J = 2**NLVL
  452:       DO 50 LVL = NLVL, 1, -1
  453:          LVL2 = LVL*2 - 1
  454: *
  455: *        Find the first node LF and last node LL on
  456: *        the current level LVL.
  457: *
  458:          IF( LVL.EQ.1 ) THEN
  459:             LF = 1
  460:             LL = 1
  461:          ELSE
  462:             LF = 2**( LVL-1 )
  463:             LL = 2*LF - 1
  464:          END IF
  465:          DO 40 I = LF, LL
  466:             IM1 = I - 1
  467:             IC = IWORK( INODE+IM1 )
  468:             NL = IWORK( NDIML+IM1 )
  469:             NR = IWORK( NDIMR+IM1 )
  470:             NLF = IC - NL
  471:             NRF = IC + 1
  472:             IF( I.EQ.LL ) THEN
  473:                SQREI = SQRE
  474:             ELSE
  475:                SQREI = 1
  476:             END IF
  477:             VFI = VF + NLF - 1
  478:             VLI = VL + NLF - 1
  479:             IDXQI = IDXQ + NLF - 1
  480:             ALPHA = D( IC )
  481:             BETA = E( IC )
  482:             IF( ICOMPQ.EQ.0 ) THEN
  483:                CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
  484:      $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
  485:      $                      IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL,
  486:      $                      LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z,
  487:      $                      K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ),
  488:      $                      IWORK( IWK ), INFO )
  489:             ELSE
  490:                J = J - 1
  491:                CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
  492:      $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
  493:      $                      IWORK( IDXQI ), PERM( NLF, LVL ),
  494:      $                      GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
  495:      $                      GIVNUM( NLF, LVL2 ), LDU,
  496:      $                      POLES( NLF, LVL2 ), DIFL( NLF, LVL ),
  497:      $                      DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ),
  498:      $                      C( J ), S( J ), WORK( NWORK1 ),
  499:      $                      IWORK( IWK ), INFO )
  500:             END IF
  501:             IF( INFO.NE.0 ) THEN
  502:                RETURN
  503:             END IF
  504:    40    CONTINUE
  505:    50 CONTINUE
  506: *
  507:       RETURN
  508: *
  509: *     End of DLASDA
  510: *
  511:       END

CVSweb interface <joel.bertrand@systella.fr>