Annotation of rpl/lapack/lapack/dlasda.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
                      2:      $                   DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
                      3:      $                   PERM, GIVNUM, C, S, WORK, IWORK, INFO )
                      4: *
1.5       bertrand    5: *  -- LAPACK auxiliary routine (version 3.2.2) --
1.1       bertrand    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.5       bertrand    8: *     June 2010
1.1       bertrand    9: *
                     10: *     .. Scalar Arguments ..
                     11:       INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
                     15:      $                   K( * ), PERM( LDGCOL, * )
                     16:       DOUBLE PRECISION   C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
                     17:      $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
                     18:      $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
                     19:      $                   Z( LDU, * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  Using a divide and conquer approach, DLASDA computes the singular
                     26: *  value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
                     27: *  B with diagonal D and offdiagonal E, where M = N + SQRE. The
                     28: *  algorithm computes the singular values in the SVD B = U * S * VT.
                     29: *  The orthogonal matrices U and VT are optionally computed in
                     30: *  compact form.
                     31: *
                     32: *  A related subroutine, DLASD0, computes the singular values and
                     33: *  the singular vectors in explicit form.
                     34: *
                     35: *  Arguments
                     36: *  =========
                     37: *
                     38: *  ICOMPQ (input) INTEGER
                     39: *         Specifies whether singular vectors are to be computed
                     40: *         in compact form, as follows
                     41: *         = 0: Compute singular values only.
                     42: *         = 1: Compute singular vectors of upper bidiagonal
                     43: *              matrix in compact form.
                     44: *
                     45: *  SMLSIZ (input) INTEGER
                     46: *         The maximum size of the subproblems at the bottom of the
                     47: *         computation tree.
                     48: *
                     49: *  N      (input) INTEGER
                     50: *         The row dimension of the upper bidiagonal matrix. This is
                     51: *         also the dimension of the main diagonal array D.
                     52: *
                     53: *  SQRE   (input) INTEGER
                     54: *         Specifies the column dimension of the bidiagonal matrix.
                     55: *         = 0: The bidiagonal matrix has column dimension M = N;
                     56: *         = 1: The bidiagonal matrix has column dimension M = N + 1.
                     57: *
                     58: *  D      (input/output) DOUBLE PRECISION array, dimension ( N )
                     59: *         On entry D contains the main diagonal of the bidiagonal
                     60: *         matrix. On exit D, if INFO = 0, contains its singular values.
                     61: *
                     62: *  E      (input) DOUBLE PRECISION array, dimension ( M-1 )
                     63: *         Contains the subdiagonal entries of the bidiagonal matrix.
                     64: *         On exit, E has been destroyed.
                     65: *
                     66: *  U      (output) DOUBLE PRECISION array,
                     67: *         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
                     68: *         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
                     69: *         singular vector matrices of all subproblems at the bottom
                     70: *         level.
                     71: *
                     72: *  LDU    (input) INTEGER, LDU = > N.
                     73: *         The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
                     74: *         GIVNUM, and Z.
                     75: *
                     76: *  VT     (output) DOUBLE PRECISION array,
                     77: *         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
                     78: *         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right
                     79: *         singular vector matrices of all subproblems at the bottom
                     80: *         level.
                     81: *
                     82: *  K      (output) INTEGER array,
                     83: *         dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
                     84: *         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
                     85: *         secular equation on the computation tree.
                     86: *
                     87: *  DIFL   (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ),
                     88: *         where NLVL = floor(log_2 (N/SMLSIZ))).
                     89: *
                     90: *  DIFR   (output) DOUBLE PRECISION array,
                     91: *                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
                     92: *                  dimension ( N ) if ICOMPQ = 0.
                     93: *         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
                     94: *         record distances between singular values on the I-th
                     95: *         level and singular values on the (I -1)-th level, and
                     96: *         DIFR(1:N, 2 * I ) contains the normalizing factors for
                     97: *         the right singular vector matrix. See DLASD8 for details.
                     98: *
                     99: *  Z      (output) DOUBLE PRECISION array,
                    100: *                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and
                    101: *                  dimension ( N ) if ICOMPQ = 0.
                    102: *         The first K elements of Z(1, I) contain the components of
                    103: *         the deflation-adjusted updating row vector for subproblems
                    104: *         on the I-th level.
                    105: *
                    106: *  POLES  (output) DOUBLE PRECISION array,
                    107: *         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
                    108: *         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
                    109: *         POLES(1, 2*I) contain  the new and old singular values
                    110: *         involved in the secular equations on the I-th level.
                    111: *
                    112: *  GIVPTR (output) INTEGER array,
                    113: *         dimension ( N ) if ICOMPQ = 1, and not referenced if
                    114: *         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
                    115: *         the number of Givens rotations performed on the I-th
                    116: *         problem on the computation tree.
                    117: *
                    118: *  GIVCOL (output) INTEGER array,
                    119: *         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
                    120: *         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
                    121: *         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
                    122: *         of Givens rotations performed on the I-th level on the
                    123: *         computation tree.
                    124: *
                    125: *  LDGCOL (input) INTEGER, LDGCOL = > N.
                    126: *         The leading dimension of arrays GIVCOL and PERM.
                    127: *
                    128: *  PERM   (output) INTEGER array,
                    129: *         dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
                    130: *         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
                    131: *         permutations done on the I-th level of the computation tree.
                    132: *
                    133: *  GIVNUM (output) DOUBLE PRECISION array,
                    134: *         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not
                    135: *         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
                    136: *         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
                    137: *         values of Givens rotations performed on the I-th level on
                    138: *         the computation tree.
                    139: *
                    140: *  C      (output) DOUBLE PRECISION array,
                    141: *         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
                    142: *         If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
                    143: *         C( I ) contains the C-value of a Givens rotation related to
                    144: *         the right null space of the I-th subproblem.
                    145: *
                    146: *  S      (output) DOUBLE PRECISION array, dimension ( N ) if
                    147: *         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
                    148: *         and the I-th subproblem is not square, on exit, S( I )
                    149: *         contains the S-value of a Givens rotation related to
                    150: *         the right null space of the I-th subproblem.
                    151: *
                    152: *  WORK   (workspace) DOUBLE PRECISION array, dimension
                    153: *         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
                    154: *
                    155: *  IWORK  (workspace) INTEGER array.
                    156: *         Dimension must be at least (7 * N).
                    157: *
                    158: *  INFO   (output) INTEGER
                    159: *          = 0:  successful exit.
                    160: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
1.5       bertrand  161: *          > 0:  if INFO = 1, a singular value did not converge
1.1       bertrand  162: *
                    163: *  Further Details
                    164: *  ===============
                    165: *
                    166: *  Based on contributions by
                    167: *     Ming Gu and Huan Ren, Computer Science Division, University of
                    168: *     California at Berkeley, USA
                    169: *
                    170: *  =====================================================================
                    171: *
                    172: *     .. Parameters ..
                    173:       DOUBLE PRECISION   ZERO, ONE
                    174:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    175: *     ..
                    176: *     .. Local Scalars ..
                    177:       INTEGER            I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK,
                    178:      $                   J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML,
                    179:      $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU,
                    180:      $                   NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
                    181:       DOUBLE PRECISION   ALPHA, BETA
                    182: *     ..
                    183: *     .. External Subroutines ..
                    184:       EXTERNAL           DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, XERBLA
                    185: *     ..
                    186: *     .. Executable Statements ..
                    187: *
                    188: *     Test the input parameters.
                    189: *
                    190:       INFO = 0
                    191: *
                    192:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    193:          INFO = -1
                    194:       ELSE IF( SMLSIZ.LT.3 ) THEN
                    195:          INFO = -2
                    196:       ELSE IF( N.LT.0 ) THEN
                    197:          INFO = -3
                    198:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
                    199:          INFO = -4
                    200:       ELSE IF( LDU.LT.( N+SQRE ) ) THEN
                    201:          INFO = -8
                    202:       ELSE IF( LDGCOL.LT.N ) THEN
                    203:          INFO = -17
                    204:       END IF
                    205:       IF( INFO.NE.0 ) THEN
                    206:          CALL XERBLA( 'DLASDA', -INFO )
                    207:          RETURN
                    208:       END IF
                    209: *
                    210:       M = N + SQRE
                    211: *
                    212: *     If the input matrix is too small, call DLASDQ to find the SVD.
                    213: *
                    214:       IF( N.LE.SMLSIZ ) THEN
                    215:          IF( ICOMPQ.EQ.0 ) THEN
                    216:             CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU,
                    217:      $                   U, LDU, WORK, INFO )
                    218:          ELSE
                    219:             CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU,
                    220:      $                   U, LDU, WORK, INFO )
                    221:          END IF
                    222:          RETURN
                    223:       END IF
                    224: *
                    225: *     Book-keeping and  set up the computation tree.
                    226: *
                    227:       INODE = 1
                    228:       NDIML = INODE + N
                    229:       NDIMR = NDIML + N
                    230:       IDXQ = NDIMR + N
                    231:       IWK = IDXQ + N
                    232: *
                    233:       NCC = 0
                    234:       NRU = 0
                    235: *
                    236:       SMLSZP = SMLSIZ + 1
                    237:       VF = 1
                    238:       VL = VF + M
                    239:       NWORK1 = VL + M
                    240:       NWORK2 = NWORK1 + SMLSZP*SMLSZP
                    241: *
                    242:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
                    243:      $             IWORK( NDIMR ), SMLSIZ )
                    244: *
                    245: *     for the nodes on bottom level of the tree, solve
                    246: *     their subproblems by DLASDQ.
                    247: *
                    248:       NDB1 = ( ND+1 ) / 2
                    249:       DO 30 I = NDB1, ND
                    250: *
                    251: *        IC : center row of each node
                    252: *        NL : number of rows of left  subproblem
                    253: *        NR : number of rows of right subproblem
                    254: *        NLF: starting row of the left   subproblem
                    255: *        NRF: starting row of the right  subproblem
                    256: *
                    257:          I1 = I - 1
                    258:          IC = IWORK( INODE+I1 )
                    259:          NL = IWORK( NDIML+I1 )
                    260:          NLP1 = NL + 1
                    261:          NR = IWORK( NDIMR+I1 )
                    262:          NLF = IC - NL
                    263:          NRF = IC + 1
                    264:          IDXQI = IDXQ + NLF - 2
                    265:          VFI = VF + NLF - 1
                    266:          VLI = VL + NLF - 1
                    267:          SQREI = 1
                    268:          IF( ICOMPQ.EQ.0 ) THEN
                    269:             CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ),
                    270:      $                   SMLSZP )
                    271:             CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ),
                    272:      $                   E( NLF ), WORK( NWORK1 ), SMLSZP,
                    273:      $                   WORK( NWORK2 ), NL, WORK( NWORK2 ), NL,
                    274:      $                   WORK( NWORK2 ), INFO )
                    275:             ITEMP = NWORK1 + NL*SMLSZP
                    276:             CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
                    277:             CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
                    278:          ELSE
                    279:             CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
                    280:             CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
                    281:             CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ),
                    282:      $                   E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU,
                    283:      $                   U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
                    284:             CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
                    285:             CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
                    286:          END IF
                    287:          IF( INFO.NE.0 ) THEN
                    288:             RETURN
                    289:          END IF
                    290:          DO 10 J = 1, NL
                    291:             IWORK( IDXQI+J ) = J
                    292:    10    CONTINUE
                    293:          IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
                    294:             SQREI = 0
                    295:          ELSE
                    296:             SQREI = 1
                    297:          END IF
                    298:          IDXQI = IDXQI + NLP1
                    299:          VFI = VFI + NLP1
                    300:          VLI = VLI + NLP1
                    301:          NRP1 = NR + SQREI
                    302:          IF( ICOMPQ.EQ.0 ) THEN
                    303:             CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ),
                    304:      $                   SMLSZP )
                    305:             CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ),
                    306:      $                   E( NRF ), WORK( NWORK1 ), SMLSZP,
                    307:      $                   WORK( NWORK2 ), NR, WORK( NWORK2 ), NR,
                    308:      $                   WORK( NWORK2 ), INFO )
                    309:             ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
                    310:             CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
                    311:             CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
                    312:          ELSE
                    313:             CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
                    314:             CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
                    315:             CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ),
                    316:      $                   E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU,
                    317:      $                   U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
                    318:             CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
                    319:             CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
                    320:          END IF
                    321:          IF( INFO.NE.0 ) THEN
                    322:             RETURN
                    323:          END IF
                    324:          DO 20 J = 1, NR
                    325:             IWORK( IDXQI+J ) = J
                    326:    20    CONTINUE
                    327:    30 CONTINUE
                    328: *
                    329: *     Now conquer each subproblem bottom-up.
                    330: *
                    331:       J = 2**NLVL
                    332:       DO 50 LVL = NLVL, 1, -1
                    333:          LVL2 = LVL*2 - 1
                    334: *
                    335: *        Find the first node LF and last node LL on
                    336: *        the current level LVL.
                    337: *
                    338:          IF( LVL.EQ.1 ) THEN
                    339:             LF = 1
                    340:             LL = 1
                    341:          ELSE
                    342:             LF = 2**( LVL-1 )
                    343:             LL = 2*LF - 1
                    344:          END IF
                    345:          DO 40 I = LF, LL
                    346:             IM1 = I - 1
                    347:             IC = IWORK( INODE+IM1 )
                    348:             NL = IWORK( NDIML+IM1 )
                    349:             NR = IWORK( NDIMR+IM1 )
                    350:             NLF = IC - NL
                    351:             NRF = IC + 1
                    352:             IF( I.EQ.LL ) THEN
                    353:                SQREI = SQRE
                    354:             ELSE
                    355:                SQREI = 1
                    356:             END IF
                    357:             VFI = VF + NLF - 1
                    358:             VLI = VL + NLF - 1
                    359:             IDXQI = IDXQ + NLF - 1
                    360:             ALPHA = D( IC )
                    361:             BETA = E( IC )
                    362:             IF( ICOMPQ.EQ.0 ) THEN
                    363:                CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
                    364:      $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
                    365:      $                      IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL,
                    366:      $                      LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z,
                    367:      $                      K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ),
                    368:      $                      IWORK( IWK ), INFO )
                    369:             ELSE
                    370:                J = J - 1
                    371:                CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
                    372:      $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
                    373:      $                      IWORK( IDXQI ), PERM( NLF, LVL ),
                    374:      $                      GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
                    375:      $                      GIVNUM( NLF, LVL2 ), LDU,
                    376:      $                      POLES( NLF, LVL2 ), DIFL( NLF, LVL ),
                    377:      $                      DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ),
                    378:      $                      C( J ), S( J ), WORK( NWORK1 ),
                    379:      $                      IWORK( IWK ), INFO )
                    380:             END IF
                    381:             IF( INFO.NE.0 ) THEN
                    382:                RETURN
                    383:             END IF
                    384:    40    CONTINUE
                    385:    50 CONTINUE
                    386: *
                    387:       RETURN
                    388: *
                    389: *     End of DLASDA
                    390: *
                    391:       END

CVSweb interface <joel.bertrand@systella.fr>