Annotation of rpl/lapack/lapack/dlasda.f, revision 1.15

1.13      bertrand    1: *> \brief \b DLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLASDA + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasda.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasda.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasda.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
                     22: *                          DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
                     23: *                          PERM, GIVNUM, C, S, WORK, IWORK, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
                     30: *      $                   K( * ), PERM( LDGCOL, * )
                     31: *       DOUBLE PRECISION   C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
                     32: *      $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
                     33: *      $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
                     34: *      $                   Z( LDU, * )
                     35: *       ..
                     36: *  
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> Using a divide and conquer approach, DLASDA computes the singular
                     44: *> value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
                     45: *> B with diagonal D and offdiagonal E, where M = N + SQRE. The
                     46: *> algorithm computes the singular values in the SVD B = U * S * VT.
                     47: *> The orthogonal matrices U and VT are optionally computed in
                     48: *> compact form.
                     49: *>
                     50: *> A related subroutine, DLASD0, computes the singular values and
                     51: *> the singular vectors in explicit form.
                     52: *> \endverbatim
                     53: *
                     54: *  Arguments:
                     55: *  ==========
                     56: *
                     57: *> \param[in] ICOMPQ
                     58: *> \verbatim
                     59: *>          ICOMPQ is INTEGER
                     60: *>         Specifies whether singular vectors are to be computed
                     61: *>         in compact form, as follows
                     62: *>         = 0: Compute singular values only.
                     63: *>         = 1: Compute singular vectors of upper bidiagonal
                     64: *>              matrix in compact form.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] SMLSIZ
                     68: *> \verbatim
                     69: *>          SMLSIZ is INTEGER
                     70: *>         The maximum size of the subproblems at the bottom of the
                     71: *>         computation tree.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] N
                     75: *> \verbatim
                     76: *>          N is INTEGER
                     77: *>         The row dimension of the upper bidiagonal matrix. This is
                     78: *>         also the dimension of the main diagonal array D.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] SQRE
                     82: *> \verbatim
                     83: *>          SQRE is INTEGER
                     84: *>         Specifies the column dimension of the bidiagonal matrix.
                     85: *>         = 0: The bidiagonal matrix has column dimension M = N;
                     86: *>         = 1: The bidiagonal matrix has column dimension M = N + 1.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in,out] D
                     90: *> \verbatim
                     91: *>          D is DOUBLE PRECISION array, dimension ( N )
                     92: *>         On entry D contains the main diagonal of the bidiagonal
                     93: *>         matrix. On exit D, if INFO = 0, contains its singular values.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] E
                     97: *> \verbatim
                     98: *>          E is DOUBLE PRECISION array, dimension ( M-1 )
                     99: *>         Contains the subdiagonal entries of the bidiagonal matrix.
                    100: *>         On exit, E has been destroyed.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[out] U
                    104: *> \verbatim
                    105: *>          U is DOUBLE PRECISION array,
                    106: *>         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
                    107: *>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
                    108: *>         singular vector matrices of all subproblems at the bottom
                    109: *>         level.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] LDU
                    113: *> \verbatim
                    114: *>          LDU is INTEGER, LDU = > N.
                    115: *>         The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
                    116: *>         GIVNUM, and Z.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[out] VT
                    120: *> \verbatim
                    121: *>          VT is DOUBLE PRECISION array,
                    122: *>         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
                    123: *>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right
                    124: *>         singular vector matrices of all subproblems at the bottom
                    125: *>         level.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[out] K
                    129: *> \verbatim
                    130: *>          K is INTEGER array,
                    131: *>         dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
                    132: *>         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
                    133: *>         secular equation on the computation tree.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[out] DIFL
                    137: *> \verbatim
                    138: *>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ),
                    139: *>         where NLVL = floor(log_2 (N/SMLSIZ))).
                    140: *> \endverbatim
                    141: *>
                    142: *> \param[out] DIFR
                    143: *> \verbatim
                    144: *>          DIFR is DOUBLE PRECISION array,
                    145: *>                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
                    146: *>                  dimension ( N ) if ICOMPQ = 0.
                    147: *>         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
                    148: *>         record distances between singular values on the I-th
                    149: *>         level and singular values on the (I -1)-th level, and
                    150: *>         DIFR(1:N, 2 * I ) contains the normalizing factors for
                    151: *>         the right singular vector matrix. See DLASD8 for details.
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[out] Z
                    155: *> \verbatim
                    156: *>          Z is DOUBLE PRECISION array,
                    157: *>                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and
                    158: *>                  dimension ( N ) if ICOMPQ = 0.
                    159: *>         The first K elements of Z(1, I) contain the components of
                    160: *>         the deflation-adjusted updating row vector for subproblems
                    161: *>         on the I-th level.
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] POLES
                    165: *> \verbatim
                    166: *>          POLES is DOUBLE PRECISION array,
                    167: *>         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
                    168: *>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
                    169: *>         POLES(1, 2*I) contain  the new and old singular values
                    170: *>         involved in the secular equations on the I-th level.
                    171: *> \endverbatim
                    172: *>
                    173: *> \param[out] GIVPTR
                    174: *> \verbatim
                    175: *>          GIVPTR is INTEGER array,
                    176: *>         dimension ( N ) if ICOMPQ = 1, and not referenced if
                    177: *>         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
                    178: *>         the number of Givens rotations performed on the I-th
                    179: *>         problem on the computation tree.
                    180: *> \endverbatim
                    181: *>
                    182: *> \param[out] GIVCOL
                    183: *> \verbatim
                    184: *>          GIVCOL is INTEGER array,
                    185: *>         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
                    186: *>         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
                    187: *>         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
                    188: *>         of Givens rotations performed on the I-th level on the
                    189: *>         computation tree.
                    190: *> \endverbatim
                    191: *>
                    192: *> \param[in] LDGCOL
                    193: *> \verbatim
                    194: *>          LDGCOL is INTEGER, LDGCOL = > N.
                    195: *>         The leading dimension of arrays GIVCOL and PERM.
                    196: *> \endverbatim
                    197: *>
                    198: *> \param[out] PERM
                    199: *> \verbatim
                    200: *>          PERM is INTEGER array,
                    201: *>         dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
                    202: *>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
                    203: *>         permutations done on the I-th level of the computation tree.
                    204: *> \endverbatim
                    205: *>
                    206: *> \param[out] GIVNUM
                    207: *> \verbatim
                    208: *>          GIVNUM is DOUBLE PRECISION array,
                    209: *>         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not
                    210: *>         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
                    211: *>         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
                    212: *>         values of Givens rotations performed on the I-th level on
                    213: *>         the computation tree.
                    214: *> \endverbatim
                    215: *>
                    216: *> \param[out] C
                    217: *> \verbatim
                    218: *>          C is DOUBLE PRECISION array,
                    219: *>         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
                    220: *>         If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
                    221: *>         C( I ) contains the C-value of a Givens rotation related to
                    222: *>         the right null space of the I-th subproblem.
                    223: *> \endverbatim
                    224: *>
                    225: *> \param[out] S
                    226: *> \verbatim
                    227: *>          S is DOUBLE PRECISION array, dimension ( N ) if
                    228: *>         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
                    229: *>         and the I-th subproblem is not square, on exit, S( I )
                    230: *>         contains the S-value of a Givens rotation related to
                    231: *>         the right null space of the I-th subproblem.
                    232: *> \endverbatim
                    233: *>
                    234: *> \param[out] WORK
                    235: *> \verbatim
                    236: *>          WORK is DOUBLE PRECISION array, dimension
                    237: *>         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
                    238: *> \endverbatim
                    239: *>
                    240: *> \param[out] IWORK
                    241: *> \verbatim
                    242: *>          IWORK is INTEGER array.
                    243: *>         Dimension must be at least (7 * N).
                    244: *> \endverbatim
                    245: *>
                    246: *> \param[out] INFO
                    247: *> \verbatim
                    248: *>          INFO is INTEGER
                    249: *>          = 0:  successful exit.
                    250: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    251: *>          > 0:  if INFO = 1, a singular value did not converge
                    252: *> \endverbatim
                    253: *
                    254: *  Authors:
                    255: *  ========
                    256: *
                    257: *> \author Univ. of Tennessee 
                    258: *> \author Univ. of California Berkeley 
                    259: *> \author Univ. of Colorado Denver 
                    260: *> \author NAG Ltd. 
                    261: *
1.13      bertrand  262: *> \date September 2012
1.10      bertrand  263: *
                    264: *> \ingroup auxOTHERauxiliary
                    265: *
                    266: *> \par Contributors:
                    267: *  ==================
                    268: *>
                    269: *>     Ming Gu and Huan Ren, Computer Science Division, University of
                    270: *>     California at Berkeley, USA
                    271: *>
                    272: *  =====================================================================
1.1       bertrand  273:       SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
                    274:      $                   DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
                    275:      $                   PERM, GIVNUM, C, S, WORK, IWORK, INFO )
                    276: *
1.13      bertrand  277: *  -- LAPACK auxiliary routine (version 3.4.2) --
1.1       bertrand  278: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    279: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.13      bertrand  280: *     September 2012
1.1       bertrand  281: *
                    282: *     .. Scalar Arguments ..
                    283:       INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
                    284: *     ..
                    285: *     .. Array Arguments ..
                    286:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
                    287:      $                   K( * ), PERM( LDGCOL, * )
                    288:       DOUBLE PRECISION   C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
                    289:      $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
                    290:      $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
                    291:      $                   Z( LDU, * )
                    292: *     ..
                    293: *
                    294: *  =====================================================================
                    295: *
                    296: *     .. Parameters ..
                    297:       DOUBLE PRECISION   ZERO, ONE
                    298:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    299: *     ..
                    300: *     .. Local Scalars ..
                    301:       INTEGER            I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK,
                    302:      $                   J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML,
                    303:      $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU,
                    304:      $                   NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
                    305:       DOUBLE PRECISION   ALPHA, BETA
                    306: *     ..
                    307: *     .. External Subroutines ..
                    308:       EXTERNAL           DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, XERBLA
                    309: *     ..
                    310: *     .. Executable Statements ..
                    311: *
                    312: *     Test the input parameters.
                    313: *
                    314:       INFO = 0
                    315: *
                    316:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    317:          INFO = -1
                    318:       ELSE IF( SMLSIZ.LT.3 ) THEN
                    319:          INFO = -2
                    320:       ELSE IF( N.LT.0 ) THEN
                    321:          INFO = -3
                    322:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
                    323:          INFO = -4
                    324:       ELSE IF( LDU.LT.( N+SQRE ) ) THEN
                    325:          INFO = -8
                    326:       ELSE IF( LDGCOL.LT.N ) THEN
                    327:          INFO = -17
                    328:       END IF
                    329:       IF( INFO.NE.0 ) THEN
                    330:          CALL XERBLA( 'DLASDA', -INFO )
                    331:          RETURN
                    332:       END IF
                    333: *
                    334:       M = N + SQRE
                    335: *
                    336: *     If the input matrix is too small, call DLASDQ to find the SVD.
                    337: *
                    338:       IF( N.LE.SMLSIZ ) THEN
                    339:          IF( ICOMPQ.EQ.0 ) THEN
                    340:             CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU,
                    341:      $                   U, LDU, WORK, INFO )
                    342:          ELSE
                    343:             CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU,
                    344:      $                   U, LDU, WORK, INFO )
                    345:          END IF
                    346:          RETURN
                    347:       END IF
                    348: *
                    349: *     Book-keeping and  set up the computation tree.
                    350: *
                    351:       INODE = 1
                    352:       NDIML = INODE + N
                    353:       NDIMR = NDIML + N
                    354:       IDXQ = NDIMR + N
                    355:       IWK = IDXQ + N
                    356: *
                    357:       NCC = 0
                    358:       NRU = 0
                    359: *
                    360:       SMLSZP = SMLSIZ + 1
                    361:       VF = 1
                    362:       VL = VF + M
                    363:       NWORK1 = VL + M
                    364:       NWORK2 = NWORK1 + SMLSZP*SMLSZP
                    365: *
                    366:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
                    367:      $             IWORK( NDIMR ), SMLSIZ )
                    368: *
                    369: *     for the nodes on bottom level of the tree, solve
                    370: *     their subproblems by DLASDQ.
                    371: *
                    372:       NDB1 = ( ND+1 ) / 2
                    373:       DO 30 I = NDB1, ND
                    374: *
                    375: *        IC : center row of each node
                    376: *        NL : number of rows of left  subproblem
                    377: *        NR : number of rows of right subproblem
                    378: *        NLF: starting row of the left   subproblem
                    379: *        NRF: starting row of the right  subproblem
                    380: *
                    381:          I1 = I - 1
                    382:          IC = IWORK( INODE+I1 )
                    383:          NL = IWORK( NDIML+I1 )
                    384:          NLP1 = NL + 1
                    385:          NR = IWORK( NDIMR+I1 )
                    386:          NLF = IC - NL
                    387:          NRF = IC + 1
                    388:          IDXQI = IDXQ + NLF - 2
                    389:          VFI = VF + NLF - 1
                    390:          VLI = VL + NLF - 1
                    391:          SQREI = 1
                    392:          IF( ICOMPQ.EQ.0 ) THEN
                    393:             CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ),
                    394:      $                   SMLSZP )
                    395:             CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ),
                    396:      $                   E( NLF ), WORK( NWORK1 ), SMLSZP,
                    397:      $                   WORK( NWORK2 ), NL, WORK( NWORK2 ), NL,
                    398:      $                   WORK( NWORK2 ), INFO )
                    399:             ITEMP = NWORK1 + NL*SMLSZP
                    400:             CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
                    401:             CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
                    402:          ELSE
                    403:             CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
                    404:             CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
                    405:             CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ),
                    406:      $                   E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU,
                    407:      $                   U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
                    408:             CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
                    409:             CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
                    410:          END IF
                    411:          IF( INFO.NE.0 ) THEN
                    412:             RETURN
                    413:          END IF
                    414:          DO 10 J = 1, NL
                    415:             IWORK( IDXQI+J ) = J
                    416:    10    CONTINUE
                    417:          IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
                    418:             SQREI = 0
                    419:          ELSE
                    420:             SQREI = 1
                    421:          END IF
                    422:          IDXQI = IDXQI + NLP1
                    423:          VFI = VFI + NLP1
                    424:          VLI = VLI + NLP1
                    425:          NRP1 = NR + SQREI
                    426:          IF( ICOMPQ.EQ.0 ) THEN
                    427:             CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ),
                    428:      $                   SMLSZP )
                    429:             CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ),
                    430:      $                   E( NRF ), WORK( NWORK1 ), SMLSZP,
                    431:      $                   WORK( NWORK2 ), NR, WORK( NWORK2 ), NR,
                    432:      $                   WORK( NWORK2 ), INFO )
                    433:             ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
                    434:             CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
                    435:             CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
                    436:          ELSE
                    437:             CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
                    438:             CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
                    439:             CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ),
                    440:      $                   E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU,
                    441:      $                   U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
                    442:             CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
                    443:             CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
                    444:          END IF
                    445:          IF( INFO.NE.0 ) THEN
                    446:             RETURN
                    447:          END IF
                    448:          DO 20 J = 1, NR
                    449:             IWORK( IDXQI+J ) = J
                    450:    20    CONTINUE
                    451:    30 CONTINUE
                    452: *
                    453: *     Now conquer each subproblem bottom-up.
                    454: *
                    455:       J = 2**NLVL
                    456:       DO 50 LVL = NLVL, 1, -1
                    457:          LVL2 = LVL*2 - 1
                    458: *
                    459: *        Find the first node LF and last node LL on
                    460: *        the current level LVL.
                    461: *
                    462:          IF( LVL.EQ.1 ) THEN
                    463:             LF = 1
                    464:             LL = 1
                    465:          ELSE
                    466:             LF = 2**( LVL-1 )
                    467:             LL = 2*LF - 1
                    468:          END IF
                    469:          DO 40 I = LF, LL
                    470:             IM1 = I - 1
                    471:             IC = IWORK( INODE+IM1 )
                    472:             NL = IWORK( NDIML+IM1 )
                    473:             NR = IWORK( NDIMR+IM1 )
                    474:             NLF = IC - NL
                    475:             NRF = IC + 1
                    476:             IF( I.EQ.LL ) THEN
                    477:                SQREI = SQRE
                    478:             ELSE
                    479:                SQREI = 1
                    480:             END IF
                    481:             VFI = VF + NLF - 1
                    482:             VLI = VL + NLF - 1
                    483:             IDXQI = IDXQ + NLF - 1
                    484:             ALPHA = D( IC )
                    485:             BETA = E( IC )
                    486:             IF( ICOMPQ.EQ.0 ) THEN
                    487:                CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
                    488:      $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
                    489:      $                      IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL,
                    490:      $                      LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z,
                    491:      $                      K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ),
                    492:      $                      IWORK( IWK ), INFO )
                    493:             ELSE
                    494:                J = J - 1
                    495:                CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
                    496:      $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
                    497:      $                      IWORK( IDXQI ), PERM( NLF, LVL ),
                    498:      $                      GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
                    499:      $                      GIVNUM( NLF, LVL2 ), LDU,
                    500:      $                      POLES( NLF, LVL2 ), DIFL( NLF, LVL ),
                    501:      $                      DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ),
                    502:      $                      C( J ), S( J ), WORK( NWORK1 ),
                    503:      $                      IWORK( IWK ), INFO )
                    504:             END IF
                    505:             IF( INFO.NE.0 ) THEN
                    506:                RETURN
                    507:             END IF
                    508:    40    CONTINUE
                    509:    50 CONTINUE
                    510: *
                    511:       RETURN
                    512: *
                    513: *     End of DLASDA
                    514: *
                    515:       END

CVSweb interface <joel.bertrand@systella.fr>