Annotation of rpl/lapack/lapack/dlasda.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
        !             2:      $                   DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
        !             3:      $                   PERM, GIVNUM, C, S, WORK, IWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK auxiliary routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
        !            15:      $                   K( * ), PERM( LDGCOL, * )
        !            16:       DOUBLE PRECISION   C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
        !            17:      $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
        !            18:      $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
        !            19:      $                   Z( LDU, * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  Using a divide and conquer approach, DLASDA computes the singular
        !            26: *  value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
        !            27: *  B with diagonal D and offdiagonal E, where M = N + SQRE. The
        !            28: *  algorithm computes the singular values in the SVD B = U * S * VT.
        !            29: *  The orthogonal matrices U and VT are optionally computed in
        !            30: *  compact form.
        !            31: *
        !            32: *  A related subroutine, DLASD0, computes the singular values and
        !            33: *  the singular vectors in explicit form.
        !            34: *
        !            35: *  Arguments
        !            36: *  =========
        !            37: *
        !            38: *  ICOMPQ (input) INTEGER
        !            39: *         Specifies whether singular vectors are to be computed
        !            40: *         in compact form, as follows
        !            41: *         = 0: Compute singular values only.
        !            42: *         = 1: Compute singular vectors of upper bidiagonal
        !            43: *              matrix in compact form.
        !            44: *
        !            45: *  SMLSIZ (input) INTEGER
        !            46: *         The maximum size of the subproblems at the bottom of the
        !            47: *         computation tree.
        !            48: *
        !            49: *  N      (input) INTEGER
        !            50: *         The row dimension of the upper bidiagonal matrix. This is
        !            51: *         also the dimension of the main diagonal array D.
        !            52: *
        !            53: *  SQRE   (input) INTEGER
        !            54: *         Specifies the column dimension of the bidiagonal matrix.
        !            55: *         = 0: The bidiagonal matrix has column dimension M = N;
        !            56: *         = 1: The bidiagonal matrix has column dimension M = N + 1.
        !            57: *
        !            58: *  D      (input/output) DOUBLE PRECISION array, dimension ( N )
        !            59: *         On entry D contains the main diagonal of the bidiagonal
        !            60: *         matrix. On exit D, if INFO = 0, contains its singular values.
        !            61: *
        !            62: *  E      (input) DOUBLE PRECISION array, dimension ( M-1 )
        !            63: *         Contains the subdiagonal entries of the bidiagonal matrix.
        !            64: *         On exit, E has been destroyed.
        !            65: *
        !            66: *  U      (output) DOUBLE PRECISION array,
        !            67: *         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
        !            68: *         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
        !            69: *         singular vector matrices of all subproblems at the bottom
        !            70: *         level.
        !            71: *
        !            72: *  LDU    (input) INTEGER, LDU = > N.
        !            73: *         The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
        !            74: *         GIVNUM, and Z.
        !            75: *
        !            76: *  VT     (output) DOUBLE PRECISION array,
        !            77: *         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
        !            78: *         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT' contains the right
        !            79: *         singular vector matrices of all subproblems at the bottom
        !            80: *         level.
        !            81: *
        !            82: *  K      (output) INTEGER array,
        !            83: *         dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
        !            84: *         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
        !            85: *         secular equation on the computation tree.
        !            86: *
        !            87: *  DIFL   (output) DOUBLE PRECISION array, dimension ( LDU, NLVL ),
        !            88: *         where NLVL = floor(log_2 (N/SMLSIZ))).
        !            89: *
        !            90: *  DIFR   (output) DOUBLE PRECISION array,
        !            91: *                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
        !            92: *                  dimension ( N ) if ICOMPQ = 0.
        !            93: *         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
        !            94: *         record distances between singular values on the I-th
        !            95: *         level and singular values on the (I -1)-th level, and
        !            96: *         DIFR(1:N, 2 * I ) contains the normalizing factors for
        !            97: *         the right singular vector matrix. See DLASD8 for details.
        !            98: *
        !            99: *  Z      (output) DOUBLE PRECISION array,
        !           100: *                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and
        !           101: *                  dimension ( N ) if ICOMPQ = 0.
        !           102: *         The first K elements of Z(1, I) contain the components of
        !           103: *         the deflation-adjusted updating row vector for subproblems
        !           104: *         on the I-th level.
        !           105: *
        !           106: *  POLES  (output) DOUBLE PRECISION array,
        !           107: *         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
        !           108: *         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
        !           109: *         POLES(1, 2*I) contain  the new and old singular values
        !           110: *         involved in the secular equations on the I-th level.
        !           111: *
        !           112: *  GIVPTR (output) INTEGER array,
        !           113: *         dimension ( N ) if ICOMPQ = 1, and not referenced if
        !           114: *         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
        !           115: *         the number of Givens rotations performed on the I-th
        !           116: *         problem on the computation tree.
        !           117: *
        !           118: *  GIVCOL (output) INTEGER array,
        !           119: *         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
        !           120: *         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
        !           121: *         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
        !           122: *         of Givens rotations performed on the I-th level on the
        !           123: *         computation tree.
        !           124: *
        !           125: *  LDGCOL (input) INTEGER, LDGCOL = > N.
        !           126: *         The leading dimension of arrays GIVCOL and PERM.
        !           127: *
        !           128: *  PERM   (output) INTEGER array,
        !           129: *         dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
        !           130: *         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
        !           131: *         permutations done on the I-th level of the computation tree.
        !           132: *
        !           133: *  GIVNUM (output) DOUBLE PRECISION array,
        !           134: *         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not
        !           135: *         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
        !           136: *         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
        !           137: *         values of Givens rotations performed on the I-th level on
        !           138: *         the computation tree.
        !           139: *
        !           140: *  C      (output) DOUBLE PRECISION array,
        !           141: *         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
        !           142: *         If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
        !           143: *         C( I ) contains the C-value of a Givens rotation related to
        !           144: *         the right null space of the I-th subproblem.
        !           145: *
        !           146: *  S      (output) DOUBLE PRECISION array, dimension ( N ) if
        !           147: *         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
        !           148: *         and the I-th subproblem is not square, on exit, S( I )
        !           149: *         contains the S-value of a Givens rotation related to
        !           150: *         the right null space of the I-th subproblem.
        !           151: *
        !           152: *  WORK   (workspace) DOUBLE PRECISION array, dimension
        !           153: *         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
        !           154: *
        !           155: *  IWORK  (workspace) INTEGER array.
        !           156: *         Dimension must be at least (7 * N).
        !           157: *
        !           158: *  INFO   (output) INTEGER
        !           159: *          = 0:  successful exit.
        !           160: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           161: *          > 0:  if INFO = 1, an singular value did not converge
        !           162: *
        !           163: *  Further Details
        !           164: *  ===============
        !           165: *
        !           166: *  Based on contributions by
        !           167: *     Ming Gu and Huan Ren, Computer Science Division, University of
        !           168: *     California at Berkeley, USA
        !           169: *
        !           170: *  =====================================================================
        !           171: *
        !           172: *     .. Parameters ..
        !           173:       DOUBLE PRECISION   ZERO, ONE
        !           174:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           175: *     ..
        !           176: *     .. Local Scalars ..
        !           177:       INTEGER            I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK,
        !           178:      $                   J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML,
        !           179:      $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU,
        !           180:      $                   NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
        !           181:       DOUBLE PRECISION   ALPHA, BETA
        !           182: *     ..
        !           183: *     .. External Subroutines ..
        !           184:       EXTERNAL           DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, XERBLA
        !           185: *     ..
        !           186: *     .. Executable Statements ..
        !           187: *
        !           188: *     Test the input parameters.
        !           189: *
        !           190:       INFO = 0
        !           191: *
        !           192:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
        !           193:          INFO = -1
        !           194:       ELSE IF( SMLSIZ.LT.3 ) THEN
        !           195:          INFO = -2
        !           196:       ELSE IF( N.LT.0 ) THEN
        !           197:          INFO = -3
        !           198:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
        !           199:          INFO = -4
        !           200:       ELSE IF( LDU.LT.( N+SQRE ) ) THEN
        !           201:          INFO = -8
        !           202:       ELSE IF( LDGCOL.LT.N ) THEN
        !           203:          INFO = -17
        !           204:       END IF
        !           205:       IF( INFO.NE.0 ) THEN
        !           206:          CALL XERBLA( 'DLASDA', -INFO )
        !           207:          RETURN
        !           208:       END IF
        !           209: *
        !           210:       M = N + SQRE
        !           211: *
        !           212: *     If the input matrix is too small, call DLASDQ to find the SVD.
        !           213: *
        !           214:       IF( N.LE.SMLSIZ ) THEN
        !           215:          IF( ICOMPQ.EQ.0 ) THEN
        !           216:             CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU,
        !           217:      $                   U, LDU, WORK, INFO )
        !           218:          ELSE
        !           219:             CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU,
        !           220:      $                   U, LDU, WORK, INFO )
        !           221:          END IF
        !           222:          RETURN
        !           223:       END IF
        !           224: *
        !           225: *     Book-keeping and  set up the computation tree.
        !           226: *
        !           227:       INODE = 1
        !           228:       NDIML = INODE + N
        !           229:       NDIMR = NDIML + N
        !           230:       IDXQ = NDIMR + N
        !           231:       IWK = IDXQ + N
        !           232: *
        !           233:       NCC = 0
        !           234:       NRU = 0
        !           235: *
        !           236:       SMLSZP = SMLSIZ + 1
        !           237:       VF = 1
        !           238:       VL = VF + M
        !           239:       NWORK1 = VL + M
        !           240:       NWORK2 = NWORK1 + SMLSZP*SMLSZP
        !           241: *
        !           242:       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
        !           243:      $             IWORK( NDIMR ), SMLSIZ )
        !           244: *
        !           245: *     for the nodes on bottom level of the tree, solve
        !           246: *     their subproblems by DLASDQ.
        !           247: *
        !           248:       NDB1 = ( ND+1 ) / 2
        !           249:       DO 30 I = NDB1, ND
        !           250: *
        !           251: *        IC : center row of each node
        !           252: *        NL : number of rows of left  subproblem
        !           253: *        NR : number of rows of right subproblem
        !           254: *        NLF: starting row of the left   subproblem
        !           255: *        NRF: starting row of the right  subproblem
        !           256: *
        !           257:          I1 = I - 1
        !           258:          IC = IWORK( INODE+I1 )
        !           259:          NL = IWORK( NDIML+I1 )
        !           260:          NLP1 = NL + 1
        !           261:          NR = IWORK( NDIMR+I1 )
        !           262:          NLF = IC - NL
        !           263:          NRF = IC + 1
        !           264:          IDXQI = IDXQ + NLF - 2
        !           265:          VFI = VF + NLF - 1
        !           266:          VLI = VL + NLF - 1
        !           267:          SQREI = 1
        !           268:          IF( ICOMPQ.EQ.0 ) THEN
        !           269:             CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ),
        !           270:      $                   SMLSZP )
        !           271:             CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ),
        !           272:      $                   E( NLF ), WORK( NWORK1 ), SMLSZP,
        !           273:      $                   WORK( NWORK2 ), NL, WORK( NWORK2 ), NL,
        !           274:      $                   WORK( NWORK2 ), INFO )
        !           275:             ITEMP = NWORK1 + NL*SMLSZP
        !           276:             CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
        !           277:             CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
        !           278:          ELSE
        !           279:             CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
        !           280:             CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
        !           281:             CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ),
        !           282:      $                   E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU,
        !           283:      $                   U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
        !           284:             CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
        !           285:             CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
        !           286:          END IF
        !           287:          IF( INFO.NE.0 ) THEN
        !           288:             RETURN
        !           289:          END IF
        !           290:          DO 10 J = 1, NL
        !           291:             IWORK( IDXQI+J ) = J
        !           292:    10    CONTINUE
        !           293:          IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
        !           294:             SQREI = 0
        !           295:          ELSE
        !           296:             SQREI = 1
        !           297:          END IF
        !           298:          IDXQI = IDXQI + NLP1
        !           299:          VFI = VFI + NLP1
        !           300:          VLI = VLI + NLP1
        !           301:          NRP1 = NR + SQREI
        !           302:          IF( ICOMPQ.EQ.0 ) THEN
        !           303:             CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ),
        !           304:      $                   SMLSZP )
        !           305:             CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ),
        !           306:      $                   E( NRF ), WORK( NWORK1 ), SMLSZP,
        !           307:      $                   WORK( NWORK2 ), NR, WORK( NWORK2 ), NR,
        !           308:      $                   WORK( NWORK2 ), INFO )
        !           309:             ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
        !           310:             CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
        !           311:             CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
        !           312:          ELSE
        !           313:             CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
        !           314:             CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
        !           315:             CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ),
        !           316:      $                   E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU,
        !           317:      $                   U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
        !           318:             CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
        !           319:             CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
        !           320:          END IF
        !           321:          IF( INFO.NE.0 ) THEN
        !           322:             RETURN
        !           323:          END IF
        !           324:          DO 20 J = 1, NR
        !           325:             IWORK( IDXQI+J ) = J
        !           326:    20    CONTINUE
        !           327:    30 CONTINUE
        !           328: *
        !           329: *     Now conquer each subproblem bottom-up.
        !           330: *
        !           331:       J = 2**NLVL
        !           332:       DO 50 LVL = NLVL, 1, -1
        !           333:          LVL2 = LVL*2 - 1
        !           334: *
        !           335: *        Find the first node LF and last node LL on
        !           336: *        the current level LVL.
        !           337: *
        !           338:          IF( LVL.EQ.1 ) THEN
        !           339:             LF = 1
        !           340:             LL = 1
        !           341:          ELSE
        !           342:             LF = 2**( LVL-1 )
        !           343:             LL = 2*LF - 1
        !           344:          END IF
        !           345:          DO 40 I = LF, LL
        !           346:             IM1 = I - 1
        !           347:             IC = IWORK( INODE+IM1 )
        !           348:             NL = IWORK( NDIML+IM1 )
        !           349:             NR = IWORK( NDIMR+IM1 )
        !           350:             NLF = IC - NL
        !           351:             NRF = IC + 1
        !           352:             IF( I.EQ.LL ) THEN
        !           353:                SQREI = SQRE
        !           354:             ELSE
        !           355:                SQREI = 1
        !           356:             END IF
        !           357:             VFI = VF + NLF - 1
        !           358:             VLI = VL + NLF - 1
        !           359:             IDXQI = IDXQ + NLF - 1
        !           360:             ALPHA = D( IC )
        !           361:             BETA = E( IC )
        !           362:             IF( ICOMPQ.EQ.0 ) THEN
        !           363:                CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
        !           364:      $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
        !           365:      $                      IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL,
        !           366:      $                      LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z,
        !           367:      $                      K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ),
        !           368:      $                      IWORK( IWK ), INFO )
        !           369:             ELSE
        !           370:                J = J - 1
        !           371:                CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
        !           372:      $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
        !           373:      $                      IWORK( IDXQI ), PERM( NLF, LVL ),
        !           374:      $                      GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
        !           375:      $                      GIVNUM( NLF, LVL2 ), LDU,
        !           376:      $                      POLES( NLF, LVL2 ), DIFL( NLF, LVL ),
        !           377:      $                      DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ),
        !           378:      $                      C( J ), S( J ), WORK( NWORK1 ),
        !           379:      $                      IWORK( IWK ), INFO )
        !           380:             END IF
        !           381:             IF( INFO.NE.0 ) THEN
        !           382:                RETURN
        !           383:             END IF
        !           384:    40    CONTINUE
        !           385:    50 CONTINUE
        !           386: *
        !           387:       RETURN
        !           388: *
        !           389: *     End of DLASDA
        !           390: *
        !           391:       END

CVSweb interface <joel.bertrand@systella.fr>