File:  [local] / rpl / lapack / lapack / dlasd8.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:42:59 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLASD8
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLASD8 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd8.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd8.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd8.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,
   22: *                          DSIGMA, WORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       INTEGER            ICOMPQ, INFO, K, LDDIFR
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( LDDIFR, * ),
   29: *      $                   DSIGMA( * ), VF( * ), VL( * ), WORK( * ),
   30: *      $                   Z( * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DLASD8 finds the square roots of the roots of the secular equation,
   40: *> as defined by the values in DSIGMA and Z. It makes the appropriate
   41: *> calls to DLASD4, and stores, for each  element in D, the distance
   42: *> to its two nearest poles (elements in DSIGMA). It also updates
   43: *> the arrays VF and VL, the first and last components of all the
   44: *> right singular vectors of the original bidiagonal matrix.
   45: *>
   46: *> DLASD8 is called from DLASD6.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] ICOMPQ
   53: *> \verbatim
   54: *>          ICOMPQ is INTEGER
   55: *>          Specifies whether singular vectors are to be computed in
   56: *>          factored form in the calling routine:
   57: *>          = 0: Compute singular values only.
   58: *>          = 1: Compute singular vectors in factored form as well.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] K
   62: *> \verbatim
   63: *>          K is INTEGER
   64: *>          The number of terms in the rational function to be solved
   65: *>          by DLASD4.  K >= 1.
   66: *> \endverbatim
   67: *>
   68: *> \param[out] D
   69: *> \verbatim
   70: *>          D is DOUBLE PRECISION array, dimension ( K )
   71: *>          On output, D contains the updated singular values.
   72: *> \endverbatim
   73: *>
   74: *> \param[in,out] Z
   75: *> \verbatim
   76: *>          Z is DOUBLE PRECISION array, dimension ( K )
   77: *>          On entry, the first K elements of this array contain the
   78: *>          components of the deflation-adjusted updating row vector.
   79: *>          On exit, Z is updated.
   80: *> \endverbatim
   81: *>
   82: *> \param[in,out] VF
   83: *> \verbatim
   84: *>          VF is DOUBLE PRECISION array, dimension ( K )
   85: *>          On entry, VF contains  information passed through DBEDE8.
   86: *>          On exit, VF contains the first K components of the first
   87: *>          components of all right singular vectors of the bidiagonal
   88: *>          matrix.
   89: *> \endverbatim
   90: *>
   91: *> \param[in,out] VL
   92: *> \verbatim
   93: *>          VL is DOUBLE PRECISION array, dimension ( K )
   94: *>          On entry, VL contains  information passed through DBEDE8.
   95: *>          On exit, VL contains the first K components of the last
   96: *>          components of all right singular vectors of the bidiagonal
   97: *>          matrix.
   98: *> \endverbatim
   99: *>
  100: *> \param[out] DIFL
  101: *> \verbatim
  102: *>          DIFL is DOUBLE PRECISION array, dimension ( K )
  103: *>          On exit, DIFL(I) = D(I) - DSIGMA(I).
  104: *> \endverbatim
  105: *>
  106: *> \param[out] DIFR
  107: *> \verbatim
  108: *>          DIFR is DOUBLE PRECISION array,
  109: *>                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
  110: *>                   dimension ( K ) if ICOMPQ = 0.
  111: *>          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
  112: *>          defined and will not be referenced.
  113: *>
  114: *>          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
  115: *>          normalizing factors for the right singular vector matrix.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] LDDIFR
  119: *> \verbatim
  120: *>          LDDIFR is INTEGER
  121: *>          The leading dimension of DIFR, must be at least K.
  122: *> \endverbatim
  123: *>
  124: *> \param[in,out] DSIGMA
  125: *> \verbatim
  126: *>          DSIGMA is DOUBLE PRECISION array, dimension ( K )
  127: *>          On entry, the first K elements of this array contain the old
  128: *>          roots of the deflated updating problem.  These are the poles
  129: *>          of the secular equation.
  130: *>          On exit, the elements of DSIGMA may be very slightly altered
  131: *>          in value.
  132: *> \endverbatim
  133: *>
  134: *> \param[out] WORK
  135: *> \verbatim
  136: *>          WORK is DOUBLE PRECISION array, dimension at least 3 * K
  137: *> \endverbatim
  138: *>
  139: *> \param[out] INFO
  140: *> \verbatim
  141: *>          INFO is INTEGER
  142: *>          = 0:  successful exit.
  143: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  144: *>          > 0:  if INFO = 1, a singular value did not converge
  145: *> \endverbatim
  146: *
  147: *  Authors:
  148: *  ========
  149: *
  150: *> \author Univ. of Tennessee 
  151: *> \author Univ. of California Berkeley 
  152: *> \author Univ. of Colorado Denver 
  153: *> \author NAG Ltd. 
  154: *
  155: *> \date November 2011
  156: *
  157: *> \ingroup auxOTHERauxiliary
  158: *
  159: *> \par Contributors:
  160: *  ==================
  161: *>
  162: *>     Ming Gu and Huan Ren, Computer Science Division, University of
  163: *>     California at Berkeley, USA
  164: *>
  165: *  =====================================================================
  166:       SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,
  167:      $                   DSIGMA, WORK, INFO )
  168: *
  169: *  -- LAPACK auxiliary routine (version 3.4.0) --
  170: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  171: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  172: *     November 2011
  173: *
  174: *     .. Scalar Arguments ..
  175:       INTEGER            ICOMPQ, INFO, K, LDDIFR
  176: *     ..
  177: *     .. Array Arguments ..
  178:       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( LDDIFR, * ),
  179:      $                   DSIGMA( * ), VF( * ), VL( * ), WORK( * ),
  180:      $                   Z( * )
  181: *     ..
  182: *
  183: *  =====================================================================
  184: *
  185: *     .. Parameters ..
  186:       DOUBLE PRECISION   ONE
  187:       PARAMETER          ( ONE = 1.0D+0 )
  188: *     ..
  189: *     .. Local Scalars ..
  190:       INTEGER            I, IWK1, IWK2, IWK2I, IWK3, IWK3I, J
  191:       DOUBLE PRECISION   DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, RHO, TEMP
  192: *     ..
  193: *     .. External Subroutines ..
  194:       EXTERNAL           DCOPY, DLASCL, DLASD4, DLASET, XERBLA
  195: *     ..
  196: *     .. External Functions ..
  197:       DOUBLE PRECISION   DDOT, DLAMC3, DNRM2
  198:       EXTERNAL           DDOT, DLAMC3, DNRM2
  199: *     ..
  200: *     .. Intrinsic Functions ..
  201:       INTRINSIC          ABS, SIGN, SQRT
  202: *     ..
  203: *     .. Executable Statements ..
  204: *
  205: *     Test the input parameters.
  206: *
  207:       INFO = 0
  208: *
  209:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
  210:          INFO = -1
  211:       ELSE IF( K.LT.1 ) THEN
  212:          INFO = -2
  213:       ELSE IF( LDDIFR.LT.K ) THEN
  214:          INFO = -9
  215:       END IF
  216:       IF( INFO.NE.0 ) THEN
  217:          CALL XERBLA( 'DLASD8', -INFO )
  218:          RETURN
  219:       END IF
  220: *
  221: *     Quick return if possible
  222: *
  223:       IF( K.EQ.1 ) THEN
  224:          D( 1 ) = ABS( Z( 1 ) )
  225:          DIFL( 1 ) = D( 1 )
  226:          IF( ICOMPQ.EQ.1 ) THEN
  227:             DIFL( 2 ) = ONE
  228:             DIFR( 1, 2 ) = ONE
  229:          END IF
  230:          RETURN
  231:       END IF
  232: *
  233: *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
  234: *     be computed with high relative accuracy (barring over/underflow).
  235: *     This is a problem on machines without a guard digit in
  236: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
  237: *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
  238: *     which on any of these machines zeros out the bottommost
  239: *     bit of DSIGMA(I) if it is 1; this makes the subsequent
  240: *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
  241: *     occurs. On binary machines with a guard digit (almost all
  242: *     machines) it does not change DSIGMA(I) at all. On hexadecimal
  243: *     and decimal machines with a guard digit, it slightly
  244: *     changes the bottommost bits of DSIGMA(I). It does not account
  245: *     for hexadecimal or decimal machines without guard digits
  246: *     (we know of none). We use a subroutine call to compute
  247: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
  248: *     this code.
  249: *
  250:       DO 10 I = 1, K
  251:          DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
  252:    10 CONTINUE
  253: *
  254: *     Book keeping.
  255: *
  256:       IWK1 = 1
  257:       IWK2 = IWK1 + K
  258:       IWK3 = IWK2 + K
  259:       IWK2I = IWK2 - 1
  260:       IWK3I = IWK3 - 1
  261: *
  262: *     Normalize Z.
  263: *
  264:       RHO = DNRM2( K, Z, 1 )
  265:       CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
  266:       RHO = RHO*RHO
  267: *
  268: *     Initialize WORK(IWK3).
  269: *
  270:       CALL DLASET( 'A', K, 1, ONE, ONE, WORK( IWK3 ), K )
  271: *
  272: *     Compute the updated singular values, the arrays DIFL, DIFR,
  273: *     and the updated Z.
  274: *
  275:       DO 40 J = 1, K
  276:          CALL DLASD4( K, J, DSIGMA, Z, WORK( IWK1 ), RHO, D( J ),
  277:      $                WORK( IWK2 ), INFO )
  278: *
  279: *        If the root finder fails, the computation is terminated.
  280: *
  281:          IF( INFO.NE.0 ) THEN
  282:             CALL XERBLA( 'DLASD4', -INFO )
  283:             RETURN
  284:          END IF
  285:          WORK( IWK3I+J ) = WORK( IWK3I+J )*WORK( J )*WORK( IWK2I+J )
  286:          DIFL( J ) = -WORK( J )
  287:          DIFR( J, 1 ) = -WORK( J+1 )
  288:          DO 20 I = 1, J - 1
  289:             WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
  290:      $                        WORK( IWK2I+I ) / ( DSIGMA( I )-
  291:      $                        DSIGMA( J ) ) / ( DSIGMA( I )+
  292:      $                        DSIGMA( J ) )
  293:    20    CONTINUE
  294:          DO 30 I = J + 1, K
  295:             WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
  296:      $                        WORK( IWK2I+I ) / ( DSIGMA( I )-
  297:      $                        DSIGMA( J ) ) / ( DSIGMA( I )+
  298:      $                        DSIGMA( J ) )
  299:    30    CONTINUE
  300:    40 CONTINUE
  301: *
  302: *     Compute updated Z.
  303: *
  304:       DO 50 I = 1, K
  305:          Z( I ) = SIGN( SQRT( ABS( WORK( IWK3I+I ) ) ), Z( I ) )
  306:    50 CONTINUE
  307: *
  308: *     Update VF and VL.
  309: *
  310:       DO 80 J = 1, K
  311:          DIFLJ = DIFL( J )
  312:          DJ = D( J )
  313:          DSIGJ = -DSIGMA( J )
  314:          IF( J.LT.K ) THEN
  315:             DIFRJ = -DIFR( J, 1 )
  316:             DSIGJP = -DSIGMA( J+1 )
  317:          END IF
  318:          WORK( J ) = -Z( J ) / DIFLJ / ( DSIGMA( J )+DJ )
  319:          DO 60 I = 1, J - 1
  320:             WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJ )-DIFLJ )
  321:      $                   / ( DSIGMA( I )+DJ )
  322:    60    CONTINUE
  323:          DO 70 I = J + 1, K
  324:             WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJP )+DIFRJ )
  325:      $                   / ( DSIGMA( I )+DJ )
  326:    70    CONTINUE
  327:          TEMP = DNRM2( K, WORK, 1 )
  328:          WORK( IWK2I+J ) = DDOT( K, WORK, 1, VF, 1 ) / TEMP
  329:          WORK( IWK3I+J ) = DDOT( K, WORK, 1, VL, 1 ) / TEMP
  330:          IF( ICOMPQ.EQ.1 ) THEN
  331:             DIFR( J, 2 ) = TEMP
  332:          END IF
  333:    80 CONTINUE
  334: *
  335:       CALL DCOPY( K, WORK( IWK2 ), 1, VF, 1 )
  336:       CALL DCOPY( K, WORK( IWK3 ), 1, VL, 1 )
  337: *
  338:       RETURN
  339: *
  340: *     End of DLASD8
  341: *
  342:       END
  343: 

CVSweb interface <joel.bertrand@systella.fr>