Annotation of rpl/lapack/lapack/dlasd8.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,
                      2:      $                   DSIGMA, WORK, INFO )
                      3: *
                      4: *  -- LAPACK auxiliary routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     October 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            ICOMPQ, INFO, K, LDDIFR
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( LDDIFR, * ),
                     14:      $                   DSIGMA( * ), VF( * ), VL( * ), WORK( * ),
                     15:      $                   Z( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DLASD8 finds the square roots of the roots of the secular equation,
                     22: *  as defined by the values in DSIGMA and Z. It makes the appropriate
                     23: *  calls to DLASD4, and stores, for each  element in D, the distance
                     24: *  to its two nearest poles (elements in DSIGMA). It also updates
                     25: *  the arrays VF and VL, the first and last components of all the
                     26: *  right singular vectors of the original bidiagonal matrix.
                     27: *
                     28: *  DLASD8 is called from DLASD6.
                     29: *
                     30: *  Arguments
                     31: *  =========
                     32: *
                     33: *  ICOMPQ  (input) INTEGER
                     34: *          Specifies whether singular vectors are to be computed in
                     35: *          factored form in the calling routine:
                     36: *          = 0: Compute singular values only.
                     37: *          = 1: Compute singular vectors in factored form as well.
                     38: *
                     39: *  K       (input) INTEGER
                     40: *          The number of terms in the rational function to be solved
                     41: *          by DLASD4.  K >= 1.
                     42: *
                     43: *  D       (output) DOUBLE PRECISION array, dimension ( K )
                     44: *          On output, D contains the updated singular values.
                     45: *
                     46: *  Z       (input/output) DOUBLE PRECISION array, dimension ( K )
                     47: *          On entry, the first K elements of this array contain the
                     48: *          components of the deflation-adjusted updating row vector.
                     49: *          On exit, Z is updated.
                     50: *
                     51: *  VF      (input/output) DOUBLE PRECISION array, dimension ( K )
                     52: *          On entry, VF contains  information passed through DBEDE8.
                     53: *          On exit, VF contains the first K components of the first
                     54: *          components of all right singular vectors of the bidiagonal
                     55: *          matrix.
                     56: *
                     57: *  VL      (input/output) DOUBLE PRECISION array, dimension ( K )
                     58: *          On entry, VL contains  information passed through DBEDE8.
                     59: *          On exit, VL contains the first K components of the last
                     60: *          components of all right singular vectors of the bidiagonal
                     61: *          matrix.
                     62: *
                     63: *  DIFL    (output) DOUBLE PRECISION array, dimension ( K )
                     64: *          On exit, DIFL(I) = D(I) - DSIGMA(I).
                     65: *
                     66: *  DIFR    (output) DOUBLE PRECISION array,
                     67: *                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
                     68: *                   dimension ( K ) if ICOMPQ = 0.
                     69: *          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
                     70: *          defined and will not be referenced.
                     71: *
                     72: *          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
                     73: *          normalizing factors for the right singular vector matrix.
                     74: *
                     75: *  LDDIFR  (input) INTEGER
                     76: *          The leading dimension of DIFR, must be at least K.
                     77: *
                     78: *  DSIGMA  (input/output) DOUBLE PRECISION array, dimension ( K )
                     79: *          On entry, the first K elements of this array contain the old
                     80: *          roots of the deflated updating problem.  These are the poles
                     81: *          of the secular equation.
                     82: *          On exit, the elements of DSIGMA may be very slightly altered
                     83: *          in value.
                     84: *
                     85: *  WORK    (workspace) DOUBLE PRECISION array, dimension at least 3 * K
                     86: *
                     87: *  INFO    (output) INTEGER
                     88: *          = 0:  successful exit.
                     89: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                     90: *          > 0:  if INFO = 1, an singular value did not converge
                     91: *
                     92: *  Further Details
                     93: *  ===============
                     94: *
                     95: *  Based on contributions by
                     96: *     Ming Gu and Huan Ren, Computer Science Division, University of
                     97: *     California at Berkeley, USA
                     98: *
                     99: *  =====================================================================
                    100: *
                    101: *     .. Parameters ..
                    102:       DOUBLE PRECISION   ONE
                    103:       PARAMETER          ( ONE = 1.0D+0 )
                    104: *     ..
                    105: *     .. Local Scalars ..
                    106:       INTEGER            I, IWK1, IWK2, IWK2I, IWK3, IWK3I, J
                    107:       DOUBLE PRECISION   DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, RHO, TEMP
                    108: *     ..
                    109: *     .. External Subroutines ..
                    110:       EXTERNAL           DCOPY, DLASCL, DLASD4, DLASET, XERBLA
                    111: *     ..
                    112: *     .. External Functions ..
                    113:       DOUBLE PRECISION   DDOT, DLAMC3, DNRM2
                    114:       EXTERNAL           DDOT, DLAMC3, DNRM2
                    115: *     ..
                    116: *     .. Intrinsic Functions ..
                    117:       INTRINSIC          ABS, SIGN, SQRT
                    118: *     ..
                    119: *     .. Executable Statements ..
                    120: *
                    121: *     Test the input parameters.
                    122: *
                    123:       INFO = 0
                    124: *
                    125:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    126:          INFO = -1
                    127:       ELSE IF( K.LT.1 ) THEN
                    128:          INFO = -2
                    129:       ELSE IF( LDDIFR.LT.K ) THEN
                    130:          INFO = -9
                    131:       END IF
                    132:       IF( INFO.NE.0 ) THEN
                    133:          CALL XERBLA( 'DLASD8', -INFO )
                    134:          RETURN
                    135:       END IF
                    136: *
                    137: *     Quick return if possible
                    138: *
                    139:       IF( K.EQ.1 ) THEN
                    140:          D( 1 ) = ABS( Z( 1 ) )
                    141:          DIFL( 1 ) = D( 1 )
                    142:          IF( ICOMPQ.EQ.1 ) THEN
                    143:             DIFL( 2 ) = ONE
                    144:             DIFR( 1, 2 ) = ONE
                    145:          END IF
                    146:          RETURN
                    147:       END IF
                    148: *
                    149: *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
                    150: *     be computed with high relative accuracy (barring over/underflow).
                    151: *     This is a problem on machines without a guard digit in
                    152: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
                    153: *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
                    154: *     which on any of these machines zeros out the bottommost
                    155: *     bit of DSIGMA(I) if it is 1; this makes the subsequent
                    156: *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
                    157: *     occurs. On binary machines with a guard digit (almost all
                    158: *     machines) it does not change DSIGMA(I) at all. On hexadecimal
                    159: *     and decimal machines with a guard digit, it slightly
                    160: *     changes the bottommost bits of DSIGMA(I). It does not account
                    161: *     for hexadecimal or decimal machines without guard digits
                    162: *     (we know of none). We use a subroutine call to compute
                    163: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
                    164: *     this code.
                    165: *
                    166:       DO 10 I = 1, K
                    167:          DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
                    168:    10 CONTINUE
                    169: *
                    170: *     Book keeping.
                    171: *
                    172:       IWK1 = 1
                    173:       IWK2 = IWK1 + K
                    174:       IWK3 = IWK2 + K
                    175:       IWK2I = IWK2 - 1
                    176:       IWK3I = IWK3 - 1
                    177: *
                    178: *     Normalize Z.
                    179: *
                    180:       RHO = DNRM2( K, Z, 1 )
                    181:       CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
                    182:       RHO = RHO*RHO
                    183: *
                    184: *     Initialize WORK(IWK3).
                    185: *
                    186:       CALL DLASET( 'A', K, 1, ONE, ONE, WORK( IWK3 ), K )
                    187: *
                    188: *     Compute the updated singular values, the arrays DIFL, DIFR,
                    189: *     and the updated Z.
                    190: *
                    191:       DO 40 J = 1, K
                    192:          CALL DLASD4( K, J, DSIGMA, Z, WORK( IWK1 ), RHO, D( J ),
                    193:      $                WORK( IWK2 ), INFO )
                    194: *
                    195: *        If the root finder fails, the computation is terminated.
                    196: *
                    197:          IF( INFO.NE.0 ) THEN
                    198:             RETURN
                    199:          END IF
                    200:          WORK( IWK3I+J ) = WORK( IWK3I+J )*WORK( J )*WORK( IWK2I+J )
                    201:          DIFL( J ) = -WORK( J )
                    202:          DIFR( J, 1 ) = -WORK( J+1 )
                    203:          DO 20 I = 1, J - 1
                    204:             WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
                    205:      $                        WORK( IWK2I+I ) / ( DSIGMA( I )-
                    206:      $                        DSIGMA( J ) ) / ( DSIGMA( I )+
                    207:      $                        DSIGMA( J ) )
                    208:    20    CONTINUE
                    209:          DO 30 I = J + 1, K
                    210:             WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
                    211:      $                        WORK( IWK2I+I ) / ( DSIGMA( I )-
                    212:      $                        DSIGMA( J ) ) / ( DSIGMA( I )+
                    213:      $                        DSIGMA( J ) )
                    214:    30    CONTINUE
                    215:    40 CONTINUE
                    216: *
                    217: *     Compute updated Z.
                    218: *
                    219:       DO 50 I = 1, K
                    220:          Z( I ) = SIGN( SQRT( ABS( WORK( IWK3I+I ) ) ), Z( I ) )
                    221:    50 CONTINUE
                    222: *
                    223: *     Update VF and VL.
                    224: *
                    225:       DO 80 J = 1, K
                    226:          DIFLJ = DIFL( J )
                    227:          DJ = D( J )
                    228:          DSIGJ = -DSIGMA( J )
                    229:          IF( J.LT.K ) THEN
                    230:             DIFRJ = -DIFR( J, 1 )
                    231:             DSIGJP = -DSIGMA( J+1 )
                    232:          END IF
                    233:          WORK( J ) = -Z( J ) / DIFLJ / ( DSIGMA( J )+DJ )
                    234:          DO 60 I = 1, J - 1
                    235:             WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJ )-DIFLJ )
                    236:      $                   / ( DSIGMA( I )+DJ )
                    237:    60    CONTINUE
                    238:          DO 70 I = J + 1, K
                    239:             WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJP )+DIFRJ )
                    240:      $                   / ( DSIGMA( I )+DJ )
                    241:    70    CONTINUE
                    242:          TEMP = DNRM2( K, WORK, 1 )
                    243:          WORK( IWK2I+J ) = DDOT( K, WORK, 1, VF, 1 ) / TEMP
                    244:          WORK( IWK3I+J ) = DDOT( K, WORK, 1, VL, 1 ) / TEMP
                    245:          IF( ICOMPQ.EQ.1 ) THEN
                    246:             DIFR( J, 2 ) = TEMP
                    247:          END IF
                    248:    80 CONTINUE
                    249: *
                    250:       CALL DCOPY( K, WORK( IWK2 ), 1, VF, 1 )
                    251:       CALL DCOPY( K, WORK( IWK3 ), 1, VL, 1 )
                    252: *
                    253:       RETURN
                    254: *
                    255: *     End of DLASD8
                    256: *
                    257:       END
                    258: 

CVSweb interface <joel.bertrand@systella.fr>