Annotation of rpl/lapack/lapack/dlasd8.f, revision 1.11

1.10      bertrand    1: *> \brief \b DLASD8
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLASD8 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd8.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd8.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd8.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,
                     22: *                          DSIGMA, WORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER            ICOMPQ, INFO, K, LDDIFR
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( LDDIFR, * ),
                     29: *      $                   DSIGMA( * ), VF( * ), VL( * ), WORK( * ),
                     30: *      $                   Z( * )
                     31: *       ..
                     32: *  
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DLASD8 finds the square roots of the roots of the secular equation,
                     40: *> as defined by the values in DSIGMA and Z. It makes the appropriate
                     41: *> calls to DLASD4, and stores, for each  element in D, the distance
                     42: *> to its two nearest poles (elements in DSIGMA). It also updates
                     43: *> the arrays VF and VL, the first and last components of all the
                     44: *> right singular vectors of the original bidiagonal matrix.
                     45: *>
                     46: *> DLASD8 is called from DLASD6.
                     47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] ICOMPQ
                     53: *> \verbatim
                     54: *>          ICOMPQ is INTEGER
                     55: *>          Specifies whether singular vectors are to be computed in
                     56: *>          factored form in the calling routine:
                     57: *>          = 0: Compute singular values only.
                     58: *>          = 1: Compute singular vectors in factored form as well.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] K
                     62: *> \verbatim
                     63: *>          K is INTEGER
                     64: *>          The number of terms in the rational function to be solved
                     65: *>          by DLASD4.  K >= 1.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[out] D
                     69: *> \verbatim
                     70: *>          D is DOUBLE PRECISION array, dimension ( K )
                     71: *>          On output, D contains the updated singular values.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in,out] Z
                     75: *> \verbatim
                     76: *>          Z is DOUBLE PRECISION array, dimension ( K )
                     77: *>          On entry, the first K elements of this array contain the
                     78: *>          components of the deflation-adjusted updating row vector.
                     79: *>          On exit, Z is updated.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in,out] VF
                     83: *> \verbatim
                     84: *>          VF is DOUBLE PRECISION array, dimension ( K )
                     85: *>          On entry, VF contains  information passed through DBEDE8.
                     86: *>          On exit, VF contains the first K components of the first
                     87: *>          components of all right singular vectors of the bidiagonal
                     88: *>          matrix.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in,out] VL
                     92: *> \verbatim
                     93: *>          VL is DOUBLE PRECISION array, dimension ( K )
                     94: *>          On entry, VL contains  information passed through DBEDE8.
                     95: *>          On exit, VL contains the first K components of the last
                     96: *>          components of all right singular vectors of the bidiagonal
                     97: *>          matrix.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[out] DIFL
                    101: *> \verbatim
                    102: *>          DIFL is DOUBLE PRECISION array, dimension ( K )
                    103: *>          On exit, DIFL(I) = D(I) - DSIGMA(I).
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[out] DIFR
                    107: *> \verbatim
                    108: *>          DIFR is DOUBLE PRECISION array,
                    109: *>                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
                    110: *>                   dimension ( K ) if ICOMPQ = 0.
                    111: *>          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
                    112: *>          defined and will not be referenced.
                    113: *>
                    114: *>          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
                    115: *>          normalizing factors for the right singular vector matrix.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] LDDIFR
                    119: *> \verbatim
                    120: *>          LDDIFR is INTEGER
                    121: *>          The leading dimension of DIFR, must be at least K.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in,out] DSIGMA
                    125: *> \verbatim
                    126: *>          DSIGMA is DOUBLE PRECISION array, dimension ( K )
                    127: *>          On entry, the first K elements of this array contain the old
                    128: *>          roots of the deflated updating problem.  These are the poles
                    129: *>          of the secular equation.
                    130: *>          On exit, the elements of DSIGMA may be very slightly altered
                    131: *>          in value.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[out] WORK
                    135: *> \verbatim
                    136: *>          WORK is DOUBLE PRECISION array, dimension at least 3 * K
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[out] INFO
                    140: *> \verbatim
                    141: *>          INFO is INTEGER
                    142: *>          = 0:  successful exit.
                    143: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    144: *>          > 0:  if INFO = 1, a singular value did not converge
                    145: *> \endverbatim
                    146: *
                    147: *  Authors:
                    148: *  ========
                    149: *
                    150: *> \author Univ. of Tennessee 
                    151: *> \author Univ. of California Berkeley 
                    152: *> \author Univ. of Colorado Denver 
                    153: *> \author NAG Ltd. 
                    154: *
                    155: *> \date November 2011
                    156: *
                    157: *> \ingroup auxOTHERauxiliary
                    158: *
                    159: *> \par Contributors:
                    160: *  ==================
                    161: *>
                    162: *>     Ming Gu and Huan Ren, Computer Science Division, University of
                    163: *>     California at Berkeley, USA
                    164: *>
                    165: *  =====================================================================
1.1       bertrand  166:       SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,
                    167:      $                   DSIGMA, WORK, INFO )
                    168: *
1.10      bertrand  169: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  170: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    171: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10      bertrand  172: *     November 2011
1.1       bertrand  173: *
                    174: *     .. Scalar Arguments ..
                    175:       INTEGER            ICOMPQ, INFO, K, LDDIFR
                    176: *     ..
                    177: *     .. Array Arguments ..
                    178:       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( LDDIFR, * ),
                    179:      $                   DSIGMA( * ), VF( * ), VL( * ), WORK( * ),
                    180:      $                   Z( * )
                    181: *     ..
                    182: *
                    183: *  =====================================================================
                    184: *
                    185: *     .. Parameters ..
                    186:       DOUBLE PRECISION   ONE
                    187:       PARAMETER          ( ONE = 1.0D+0 )
                    188: *     ..
                    189: *     .. Local Scalars ..
                    190:       INTEGER            I, IWK1, IWK2, IWK2I, IWK3, IWK3I, J
                    191:       DOUBLE PRECISION   DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, RHO, TEMP
                    192: *     ..
                    193: *     .. External Subroutines ..
                    194:       EXTERNAL           DCOPY, DLASCL, DLASD4, DLASET, XERBLA
                    195: *     ..
                    196: *     .. External Functions ..
                    197:       DOUBLE PRECISION   DDOT, DLAMC3, DNRM2
                    198:       EXTERNAL           DDOT, DLAMC3, DNRM2
                    199: *     ..
                    200: *     .. Intrinsic Functions ..
                    201:       INTRINSIC          ABS, SIGN, SQRT
                    202: *     ..
                    203: *     .. Executable Statements ..
                    204: *
                    205: *     Test the input parameters.
                    206: *
                    207:       INFO = 0
                    208: *
                    209:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    210:          INFO = -1
                    211:       ELSE IF( K.LT.1 ) THEN
                    212:          INFO = -2
                    213:       ELSE IF( LDDIFR.LT.K ) THEN
                    214:          INFO = -9
                    215:       END IF
                    216:       IF( INFO.NE.0 ) THEN
                    217:          CALL XERBLA( 'DLASD8', -INFO )
                    218:          RETURN
                    219:       END IF
                    220: *
                    221: *     Quick return if possible
                    222: *
                    223:       IF( K.EQ.1 ) THEN
                    224:          D( 1 ) = ABS( Z( 1 ) )
                    225:          DIFL( 1 ) = D( 1 )
                    226:          IF( ICOMPQ.EQ.1 ) THEN
                    227:             DIFL( 2 ) = ONE
                    228:             DIFR( 1, 2 ) = ONE
                    229:          END IF
                    230:          RETURN
                    231:       END IF
                    232: *
                    233: *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
                    234: *     be computed with high relative accuracy (barring over/underflow).
                    235: *     This is a problem on machines without a guard digit in
                    236: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
                    237: *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
                    238: *     which on any of these machines zeros out the bottommost
                    239: *     bit of DSIGMA(I) if it is 1; this makes the subsequent
                    240: *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
                    241: *     occurs. On binary machines with a guard digit (almost all
                    242: *     machines) it does not change DSIGMA(I) at all. On hexadecimal
                    243: *     and decimal machines with a guard digit, it slightly
                    244: *     changes the bottommost bits of DSIGMA(I). It does not account
                    245: *     for hexadecimal or decimal machines without guard digits
                    246: *     (we know of none). We use a subroutine call to compute
                    247: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
                    248: *     this code.
                    249: *
                    250:       DO 10 I = 1, K
                    251:          DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
                    252:    10 CONTINUE
                    253: *
                    254: *     Book keeping.
                    255: *
                    256:       IWK1 = 1
                    257:       IWK2 = IWK1 + K
                    258:       IWK3 = IWK2 + K
                    259:       IWK2I = IWK2 - 1
                    260:       IWK3I = IWK3 - 1
                    261: *
                    262: *     Normalize Z.
                    263: *
                    264:       RHO = DNRM2( K, Z, 1 )
                    265:       CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
                    266:       RHO = RHO*RHO
                    267: *
                    268: *     Initialize WORK(IWK3).
                    269: *
                    270:       CALL DLASET( 'A', K, 1, ONE, ONE, WORK( IWK3 ), K )
                    271: *
                    272: *     Compute the updated singular values, the arrays DIFL, DIFR,
                    273: *     and the updated Z.
                    274: *
                    275:       DO 40 J = 1, K
                    276:          CALL DLASD4( K, J, DSIGMA, Z, WORK( IWK1 ), RHO, D( J ),
                    277:      $                WORK( IWK2 ), INFO )
                    278: *
                    279: *        If the root finder fails, the computation is terminated.
                    280: *
                    281:          IF( INFO.NE.0 ) THEN
1.8       bertrand  282:             CALL XERBLA( 'DLASD4', -INFO )
1.1       bertrand  283:             RETURN
                    284:          END IF
                    285:          WORK( IWK3I+J ) = WORK( IWK3I+J )*WORK( J )*WORK( IWK2I+J )
                    286:          DIFL( J ) = -WORK( J )
                    287:          DIFR( J, 1 ) = -WORK( J+1 )
                    288:          DO 20 I = 1, J - 1
                    289:             WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
                    290:      $                        WORK( IWK2I+I ) / ( DSIGMA( I )-
                    291:      $                        DSIGMA( J ) ) / ( DSIGMA( I )+
                    292:      $                        DSIGMA( J ) )
                    293:    20    CONTINUE
                    294:          DO 30 I = J + 1, K
                    295:             WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
                    296:      $                        WORK( IWK2I+I ) / ( DSIGMA( I )-
                    297:      $                        DSIGMA( J ) ) / ( DSIGMA( I )+
                    298:      $                        DSIGMA( J ) )
                    299:    30    CONTINUE
                    300:    40 CONTINUE
                    301: *
                    302: *     Compute updated Z.
                    303: *
                    304:       DO 50 I = 1, K
                    305:          Z( I ) = SIGN( SQRT( ABS( WORK( IWK3I+I ) ) ), Z( I ) )
                    306:    50 CONTINUE
                    307: *
                    308: *     Update VF and VL.
                    309: *
                    310:       DO 80 J = 1, K
                    311:          DIFLJ = DIFL( J )
                    312:          DJ = D( J )
                    313:          DSIGJ = -DSIGMA( J )
                    314:          IF( J.LT.K ) THEN
                    315:             DIFRJ = -DIFR( J, 1 )
                    316:             DSIGJP = -DSIGMA( J+1 )
                    317:          END IF
                    318:          WORK( J ) = -Z( J ) / DIFLJ / ( DSIGMA( J )+DJ )
                    319:          DO 60 I = 1, J - 1
                    320:             WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJ )-DIFLJ )
                    321:      $                   / ( DSIGMA( I )+DJ )
                    322:    60    CONTINUE
                    323:          DO 70 I = J + 1, K
                    324:             WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJP )+DIFRJ )
                    325:      $                   / ( DSIGMA( I )+DJ )
                    326:    70    CONTINUE
                    327:          TEMP = DNRM2( K, WORK, 1 )
                    328:          WORK( IWK2I+J ) = DDOT( K, WORK, 1, VF, 1 ) / TEMP
                    329:          WORK( IWK3I+J ) = DDOT( K, WORK, 1, VL, 1 ) / TEMP
                    330:          IF( ICOMPQ.EQ.1 ) THEN
                    331:             DIFR( J, 2 ) = TEMP
                    332:          END IF
                    333:    80 CONTINUE
                    334: *
                    335:       CALL DCOPY( K, WORK( IWK2 ), 1, VF, 1 )
                    336:       CALL DCOPY( K, WORK( IWK3 ), 1, VL, 1 )
                    337: *
                    338:       RETURN
                    339: *
                    340: *     End of DLASD8
                    341: *
                    342:       END
                    343: 

CVSweb interface <joel.bertrand@systella.fr>