Annotation of rpl/lapack/lapack/dlasd8.f, revision 1.10

1.10    ! bertrand    1: *> \brief \b DLASD8
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLASD8 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd8.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd8.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd8.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,
        !            22: *                          DSIGMA, WORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            ICOMPQ, INFO, K, LDDIFR
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( LDDIFR, * ),
        !            29: *      $                   DSIGMA( * ), VF( * ), VL( * ), WORK( * ),
        !            30: *      $                   Z( * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> DLASD8 finds the square roots of the roots of the secular equation,
        !            40: *> as defined by the values in DSIGMA and Z. It makes the appropriate
        !            41: *> calls to DLASD4, and stores, for each  element in D, the distance
        !            42: *> to its two nearest poles (elements in DSIGMA). It also updates
        !            43: *> the arrays VF and VL, the first and last components of all the
        !            44: *> right singular vectors of the original bidiagonal matrix.
        !            45: *>
        !            46: *> DLASD8 is called from DLASD6.
        !            47: *> \endverbatim
        !            48: *
        !            49: *  Arguments:
        !            50: *  ==========
        !            51: *
        !            52: *> \param[in] ICOMPQ
        !            53: *> \verbatim
        !            54: *>          ICOMPQ is INTEGER
        !            55: *>          Specifies whether singular vectors are to be computed in
        !            56: *>          factored form in the calling routine:
        !            57: *>          = 0: Compute singular values only.
        !            58: *>          = 1: Compute singular vectors in factored form as well.
        !            59: *> \endverbatim
        !            60: *>
        !            61: *> \param[in] K
        !            62: *> \verbatim
        !            63: *>          K is INTEGER
        !            64: *>          The number of terms in the rational function to be solved
        !            65: *>          by DLASD4.  K >= 1.
        !            66: *> \endverbatim
        !            67: *>
        !            68: *> \param[out] D
        !            69: *> \verbatim
        !            70: *>          D is DOUBLE PRECISION array, dimension ( K )
        !            71: *>          On output, D contains the updated singular values.
        !            72: *> \endverbatim
        !            73: *>
        !            74: *> \param[in,out] Z
        !            75: *> \verbatim
        !            76: *>          Z is DOUBLE PRECISION array, dimension ( K )
        !            77: *>          On entry, the first K elements of this array contain the
        !            78: *>          components of the deflation-adjusted updating row vector.
        !            79: *>          On exit, Z is updated.
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in,out] VF
        !            83: *> \verbatim
        !            84: *>          VF is DOUBLE PRECISION array, dimension ( K )
        !            85: *>          On entry, VF contains  information passed through DBEDE8.
        !            86: *>          On exit, VF contains the first K components of the first
        !            87: *>          components of all right singular vectors of the bidiagonal
        !            88: *>          matrix.
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[in,out] VL
        !            92: *> \verbatim
        !            93: *>          VL is DOUBLE PRECISION array, dimension ( K )
        !            94: *>          On entry, VL contains  information passed through DBEDE8.
        !            95: *>          On exit, VL contains the first K components of the last
        !            96: *>          components of all right singular vectors of the bidiagonal
        !            97: *>          matrix.
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[out] DIFL
        !           101: *> \verbatim
        !           102: *>          DIFL is DOUBLE PRECISION array, dimension ( K )
        !           103: *>          On exit, DIFL(I) = D(I) - DSIGMA(I).
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[out] DIFR
        !           107: *> \verbatim
        !           108: *>          DIFR is DOUBLE PRECISION array,
        !           109: *>                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
        !           110: *>                   dimension ( K ) if ICOMPQ = 0.
        !           111: *>          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
        !           112: *>          defined and will not be referenced.
        !           113: *>
        !           114: *>          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
        !           115: *>          normalizing factors for the right singular vector matrix.
        !           116: *> \endverbatim
        !           117: *>
        !           118: *> \param[in] LDDIFR
        !           119: *> \verbatim
        !           120: *>          LDDIFR is INTEGER
        !           121: *>          The leading dimension of DIFR, must be at least K.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[in,out] DSIGMA
        !           125: *> \verbatim
        !           126: *>          DSIGMA is DOUBLE PRECISION array, dimension ( K )
        !           127: *>          On entry, the first K elements of this array contain the old
        !           128: *>          roots of the deflated updating problem.  These are the poles
        !           129: *>          of the secular equation.
        !           130: *>          On exit, the elements of DSIGMA may be very slightly altered
        !           131: *>          in value.
        !           132: *> \endverbatim
        !           133: *>
        !           134: *> \param[out] WORK
        !           135: *> \verbatim
        !           136: *>          WORK is DOUBLE PRECISION array, dimension at least 3 * K
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[out] INFO
        !           140: *> \verbatim
        !           141: *>          INFO is INTEGER
        !           142: *>          = 0:  successful exit.
        !           143: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           144: *>          > 0:  if INFO = 1, a singular value did not converge
        !           145: *> \endverbatim
        !           146: *
        !           147: *  Authors:
        !           148: *  ========
        !           149: *
        !           150: *> \author Univ. of Tennessee 
        !           151: *> \author Univ. of California Berkeley 
        !           152: *> \author Univ. of Colorado Denver 
        !           153: *> \author NAG Ltd. 
        !           154: *
        !           155: *> \date November 2011
        !           156: *
        !           157: *> \ingroup auxOTHERauxiliary
        !           158: *
        !           159: *> \par Contributors:
        !           160: *  ==================
        !           161: *>
        !           162: *>     Ming Gu and Huan Ren, Computer Science Division, University of
        !           163: *>     California at Berkeley, USA
        !           164: *>
        !           165: *  =====================================================================
1.1       bertrand  166:       SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,
                    167:      $                   DSIGMA, WORK, INFO )
                    168: *
1.10    ! bertrand  169: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  170: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    171: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10    ! bertrand  172: *     November 2011
1.1       bertrand  173: *
                    174: *     .. Scalar Arguments ..
                    175:       INTEGER            ICOMPQ, INFO, K, LDDIFR
                    176: *     ..
                    177: *     .. Array Arguments ..
                    178:       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( LDDIFR, * ),
                    179:      $                   DSIGMA( * ), VF( * ), VL( * ), WORK( * ),
                    180:      $                   Z( * )
                    181: *     ..
                    182: *
                    183: *  =====================================================================
                    184: *
                    185: *     .. Parameters ..
                    186:       DOUBLE PRECISION   ONE
                    187:       PARAMETER          ( ONE = 1.0D+0 )
                    188: *     ..
                    189: *     .. Local Scalars ..
                    190:       INTEGER            I, IWK1, IWK2, IWK2I, IWK3, IWK3I, J
                    191:       DOUBLE PRECISION   DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, RHO, TEMP
                    192: *     ..
                    193: *     .. External Subroutines ..
                    194:       EXTERNAL           DCOPY, DLASCL, DLASD4, DLASET, XERBLA
                    195: *     ..
                    196: *     .. External Functions ..
                    197:       DOUBLE PRECISION   DDOT, DLAMC3, DNRM2
                    198:       EXTERNAL           DDOT, DLAMC3, DNRM2
                    199: *     ..
                    200: *     .. Intrinsic Functions ..
                    201:       INTRINSIC          ABS, SIGN, SQRT
                    202: *     ..
                    203: *     .. Executable Statements ..
                    204: *
                    205: *     Test the input parameters.
                    206: *
                    207:       INFO = 0
                    208: *
                    209:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    210:          INFO = -1
                    211:       ELSE IF( K.LT.1 ) THEN
                    212:          INFO = -2
                    213:       ELSE IF( LDDIFR.LT.K ) THEN
                    214:          INFO = -9
                    215:       END IF
                    216:       IF( INFO.NE.0 ) THEN
                    217:          CALL XERBLA( 'DLASD8', -INFO )
                    218:          RETURN
                    219:       END IF
                    220: *
                    221: *     Quick return if possible
                    222: *
                    223:       IF( K.EQ.1 ) THEN
                    224:          D( 1 ) = ABS( Z( 1 ) )
                    225:          DIFL( 1 ) = D( 1 )
                    226:          IF( ICOMPQ.EQ.1 ) THEN
                    227:             DIFL( 2 ) = ONE
                    228:             DIFR( 1, 2 ) = ONE
                    229:          END IF
                    230:          RETURN
                    231:       END IF
                    232: *
                    233: *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
                    234: *     be computed with high relative accuracy (barring over/underflow).
                    235: *     This is a problem on machines without a guard digit in
                    236: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
                    237: *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
                    238: *     which on any of these machines zeros out the bottommost
                    239: *     bit of DSIGMA(I) if it is 1; this makes the subsequent
                    240: *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
                    241: *     occurs. On binary machines with a guard digit (almost all
                    242: *     machines) it does not change DSIGMA(I) at all. On hexadecimal
                    243: *     and decimal machines with a guard digit, it slightly
                    244: *     changes the bottommost bits of DSIGMA(I). It does not account
                    245: *     for hexadecimal or decimal machines without guard digits
                    246: *     (we know of none). We use a subroutine call to compute
                    247: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
                    248: *     this code.
                    249: *
                    250:       DO 10 I = 1, K
                    251:          DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
                    252:    10 CONTINUE
                    253: *
                    254: *     Book keeping.
                    255: *
                    256:       IWK1 = 1
                    257:       IWK2 = IWK1 + K
                    258:       IWK3 = IWK2 + K
                    259:       IWK2I = IWK2 - 1
                    260:       IWK3I = IWK3 - 1
                    261: *
                    262: *     Normalize Z.
                    263: *
                    264:       RHO = DNRM2( K, Z, 1 )
                    265:       CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
                    266:       RHO = RHO*RHO
                    267: *
                    268: *     Initialize WORK(IWK3).
                    269: *
                    270:       CALL DLASET( 'A', K, 1, ONE, ONE, WORK( IWK3 ), K )
                    271: *
                    272: *     Compute the updated singular values, the arrays DIFL, DIFR,
                    273: *     and the updated Z.
                    274: *
                    275:       DO 40 J = 1, K
                    276:          CALL DLASD4( K, J, DSIGMA, Z, WORK( IWK1 ), RHO, D( J ),
                    277:      $                WORK( IWK2 ), INFO )
                    278: *
                    279: *        If the root finder fails, the computation is terminated.
                    280: *
                    281:          IF( INFO.NE.0 ) THEN
1.8       bertrand  282:             CALL XERBLA( 'DLASD4', -INFO )
1.1       bertrand  283:             RETURN
                    284:          END IF
                    285:          WORK( IWK3I+J ) = WORK( IWK3I+J )*WORK( J )*WORK( IWK2I+J )
                    286:          DIFL( J ) = -WORK( J )
                    287:          DIFR( J, 1 ) = -WORK( J+1 )
                    288:          DO 20 I = 1, J - 1
                    289:             WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
                    290:      $                        WORK( IWK2I+I ) / ( DSIGMA( I )-
                    291:      $                        DSIGMA( J ) ) / ( DSIGMA( I )+
                    292:      $                        DSIGMA( J ) )
                    293:    20    CONTINUE
                    294:          DO 30 I = J + 1, K
                    295:             WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
                    296:      $                        WORK( IWK2I+I ) / ( DSIGMA( I )-
                    297:      $                        DSIGMA( J ) ) / ( DSIGMA( I )+
                    298:      $                        DSIGMA( J ) )
                    299:    30    CONTINUE
                    300:    40 CONTINUE
                    301: *
                    302: *     Compute updated Z.
                    303: *
                    304:       DO 50 I = 1, K
                    305:          Z( I ) = SIGN( SQRT( ABS( WORK( IWK3I+I ) ) ), Z( I ) )
                    306:    50 CONTINUE
                    307: *
                    308: *     Update VF and VL.
                    309: *
                    310:       DO 80 J = 1, K
                    311:          DIFLJ = DIFL( J )
                    312:          DJ = D( J )
                    313:          DSIGJ = -DSIGMA( J )
                    314:          IF( J.LT.K ) THEN
                    315:             DIFRJ = -DIFR( J, 1 )
                    316:             DSIGJP = -DSIGMA( J+1 )
                    317:          END IF
                    318:          WORK( J ) = -Z( J ) / DIFLJ / ( DSIGMA( J )+DJ )
                    319:          DO 60 I = 1, J - 1
                    320:             WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJ )-DIFLJ )
                    321:      $                   / ( DSIGMA( I )+DJ )
                    322:    60    CONTINUE
                    323:          DO 70 I = J + 1, K
                    324:             WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJP )+DIFRJ )
                    325:      $                   / ( DSIGMA( I )+DJ )
                    326:    70    CONTINUE
                    327:          TEMP = DNRM2( K, WORK, 1 )
                    328:          WORK( IWK2I+J ) = DDOT( K, WORK, 1, VF, 1 ) / TEMP
                    329:          WORK( IWK3I+J ) = DDOT( K, WORK, 1, VL, 1 ) / TEMP
                    330:          IF( ICOMPQ.EQ.1 ) THEN
                    331:             DIFR( J, 2 ) = TEMP
                    332:          END IF
                    333:    80 CONTINUE
                    334: *
                    335:       CALL DCOPY( K, WORK( IWK2 ), 1, VF, 1 )
                    336:       CALL DCOPY( K, WORK( IWK3 ), 1, VL, 1 )
                    337: *
                    338:       RETURN
                    339: *
                    340: *     End of DLASD8
                    341: *
                    342:       END
                    343: 

CVSweb interface <joel.bertrand@systella.fr>