Annotation of rpl/lapack/lapack/dlasd8.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR,
        !             2:      $                   DSIGMA, WORK, INFO )
        !             3: *
        !             4: *  -- LAPACK auxiliary routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     October 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            ICOMPQ, INFO, K, LDDIFR
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( LDDIFR, * ),
        !            14:      $                   DSIGMA( * ), VF( * ), VL( * ), WORK( * ),
        !            15:      $                   Z( * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DLASD8 finds the square roots of the roots of the secular equation,
        !            22: *  as defined by the values in DSIGMA and Z. It makes the appropriate
        !            23: *  calls to DLASD4, and stores, for each  element in D, the distance
        !            24: *  to its two nearest poles (elements in DSIGMA). It also updates
        !            25: *  the arrays VF and VL, the first and last components of all the
        !            26: *  right singular vectors of the original bidiagonal matrix.
        !            27: *
        !            28: *  DLASD8 is called from DLASD6.
        !            29: *
        !            30: *  Arguments
        !            31: *  =========
        !            32: *
        !            33: *  ICOMPQ  (input) INTEGER
        !            34: *          Specifies whether singular vectors are to be computed in
        !            35: *          factored form in the calling routine:
        !            36: *          = 0: Compute singular values only.
        !            37: *          = 1: Compute singular vectors in factored form as well.
        !            38: *
        !            39: *  K       (input) INTEGER
        !            40: *          The number of terms in the rational function to be solved
        !            41: *          by DLASD4.  K >= 1.
        !            42: *
        !            43: *  D       (output) DOUBLE PRECISION array, dimension ( K )
        !            44: *          On output, D contains the updated singular values.
        !            45: *
        !            46: *  Z       (input/output) DOUBLE PRECISION array, dimension ( K )
        !            47: *          On entry, the first K elements of this array contain the
        !            48: *          components of the deflation-adjusted updating row vector.
        !            49: *          On exit, Z is updated.
        !            50: *
        !            51: *  VF      (input/output) DOUBLE PRECISION array, dimension ( K )
        !            52: *          On entry, VF contains  information passed through DBEDE8.
        !            53: *          On exit, VF contains the first K components of the first
        !            54: *          components of all right singular vectors of the bidiagonal
        !            55: *          matrix.
        !            56: *
        !            57: *  VL      (input/output) DOUBLE PRECISION array, dimension ( K )
        !            58: *          On entry, VL contains  information passed through DBEDE8.
        !            59: *          On exit, VL contains the first K components of the last
        !            60: *          components of all right singular vectors of the bidiagonal
        !            61: *          matrix.
        !            62: *
        !            63: *  DIFL    (output) DOUBLE PRECISION array, dimension ( K )
        !            64: *          On exit, DIFL(I) = D(I) - DSIGMA(I).
        !            65: *
        !            66: *  DIFR    (output) DOUBLE PRECISION array,
        !            67: *                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
        !            68: *                   dimension ( K ) if ICOMPQ = 0.
        !            69: *          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
        !            70: *          defined and will not be referenced.
        !            71: *
        !            72: *          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
        !            73: *          normalizing factors for the right singular vector matrix.
        !            74: *
        !            75: *  LDDIFR  (input) INTEGER
        !            76: *          The leading dimension of DIFR, must be at least K.
        !            77: *
        !            78: *  DSIGMA  (input/output) DOUBLE PRECISION array, dimension ( K )
        !            79: *          On entry, the first K elements of this array contain the old
        !            80: *          roots of the deflated updating problem.  These are the poles
        !            81: *          of the secular equation.
        !            82: *          On exit, the elements of DSIGMA may be very slightly altered
        !            83: *          in value.
        !            84: *
        !            85: *  WORK    (workspace) DOUBLE PRECISION array, dimension at least 3 * K
        !            86: *
        !            87: *  INFO    (output) INTEGER
        !            88: *          = 0:  successful exit.
        !            89: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !            90: *          > 0:  if INFO = 1, an singular value did not converge
        !            91: *
        !            92: *  Further Details
        !            93: *  ===============
        !            94: *
        !            95: *  Based on contributions by
        !            96: *     Ming Gu and Huan Ren, Computer Science Division, University of
        !            97: *     California at Berkeley, USA
        !            98: *
        !            99: *  =====================================================================
        !           100: *
        !           101: *     .. Parameters ..
        !           102:       DOUBLE PRECISION   ONE
        !           103:       PARAMETER          ( ONE = 1.0D+0 )
        !           104: *     ..
        !           105: *     .. Local Scalars ..
        !           106:       INTEGER            I, IWK1, IWK2, IWK2I, IWK3, IWK3I, J
        !           107:       DOUBLE PRECISION   DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, RHO, TEMP
        !           108: *     ..
        !           109: *     .. External Subroutines ..
        !           110:       EXTERNAL           DCOPY, DLASCL, DLASD4, DLASET, XERBLA
        !           111: *     ..
        !           112: *     .. External Functions ..
        !           113:       DOUBLE PRECISION   DDOT, DLAMC3, DNRM2
        !           114:       EXTERNAL           DDOT, DLAMC3, DNRM2
        !           115: *     ..
        !           116: *     .. Intrinsic Functions ..
        !           117:       INTRINSIC          ABS, SIGN, SQRT
        !           118: *     ..
        !           119: *     .. Executable Statements ..
        !           120: *
        !           121: *     Test the input parameters.
        !           122: *
        !           123:       INFO = 0
        !           124: *
        !           125:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
        !           126:          INFO = -1
        !           127:       ELSE IF( K.LT.1 ) THEN
        !           128:          INFO = -2
        !           129:       ELSE IF( LDDIFR.LT.K ) THEN
        !           130:          INFO = -9
        !           131:       END IF
        !           132:       IF( INFO.NE.0 ) THEN
        !           133:          CALL XERBLA( 'DLASD8', -INFO )
        !           134:          RETURN
        !           135:       END IF
        !           136: *
        !           137: *     Quick return if possible
        !           138: *
        !           139:       IF( K.EQ.1 ) THEN
        !           140:          D( 1 ) = ABS( Z( 1 ) )
        !           141:          DIFL( 1 ) = D( 1 )
        !           142:          IF( ICOMPQ.EQ.1 ) THEN
        !           143:             DIFL( 2 ) = ONE
        !           144:             DIFR( 1, 2 ) = ONE
        !           145:          END IF
        !           146:          RETURN
        !           147:       END IF
        !           148: *
        !           149: *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
        !           150: *     be computed with high relative accuracy (barring over/underflow).
        !           151: *     This is a problem on machines without a guard digit in
        !           152: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
        !           153: *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
        !           154: *     which on any of these machines zeros out the bottommost
        !           155: *     bit of DSIGMA(I) if it is 1; this makes the subsequent
        !           156: *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
        !           157: *     occurs. On binary machines with a guard digit (almost all
        !           158: *     machines) it does not change DSIGMA(I) at all. On hexadecimal
        !           159: *     and decimal machines with a guard digit, it slightly
        !           160: *     changes the bottommost bits of DSIGMA(I). It does not account
        !           161: *     for hexadecimal or decimal machines without guard digits
        !           162: *     (we know of none). We use a subroutine call to compute
        !           163: *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
        !           164: *     this code.
        !           165: *
        !           166:       DO 10 I = 1, K
        !           167:          DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
        !           168:    10 CONTINUE
        !           169: *
        !           170: *     Book keeping.
        !           171: *
        !           172:       IWK1 = 1
        !           173:       IWK2 = IWK1 + K
        !           174:       IWK3 = IWK2 + K
        !           175:       IWK2I = IWK2 - 1
        !           176:       IWK3I = IWK3 - 1
        !           177: *
        !           178: *     Normalize Z.
        !           179: *
        !           180:       RHO = DNRM2( K, Z, 1 )
        !           181:       CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
        !           182:       RHO = RHO*RHO
        !           183: *
        !           184: *     Initialize WORK(IWK3).
        !           185: *
        !           186:       CALL DLASET( 'A', K, 1, ONE, ONE, WORK( IWK3 ), K )
        !           187: *
        !           188: *     Compute the updated singular values, the arrays DIFL, DIFR,
        !           189: *     and the updated Z.
        !           190: *
        !           191:       DO 40 J = 1, K
        !           192:          CALL DLASD4( K, J, DSIGMA, Z, WORK( IWK1 ), RHO, D( J ),
        !           193:      $                WORK( IWK2 ), INFO )
        !           194: *
        !           195: *        If the root finder fails, the computation is terminated.
        !           196: *
        !           197:          IF( INFO.NE.0 ) THEN
        !           198:             RETURN
        !           199:          END IF
        !           200:          WORK( IWK3I+J ) = WORK( IWK3I+J )*WORK( J )*WORK( IWK2I+J )
        !           201:          DIFL( J ) = -WORK( J )
        !           202:          DIFR( J, 1 ) = -WORK( J+1 )
        !           203:          DO 20 I = 1, J - 1
        !           204:             WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
        !           205:      $                        WORK( IWK2I+I ) / ( DSIGMA( I )-
        !           206:      $                        DSIGMA( J ) ) / ( DSIGMA( I )+
        !           207:      $                        DSIGMA( J ) )
        !           208:    20    CONTINUE
        !           209:          DO 30 I = J + 1, K
        !           210:             WORK( IWK3I+I ) = WORK( IWK3I+I )*WORK( I )*
        !           211:      $                        WORK( IWK2I+I ) / ( DSIGMA( I )-
        !           212:      $                        DSIGMA( J ) ) / ( DSIGMA( I )+
        !           213:      $                        DSIGMA( J ) )
        !           214:    30    CONTINUE
        !           215:    40 CONTINUE
        !           216: *
        !           217: *     Compute updated Z.
        !           218: *
        !           219:       DO 50 I = 1, K
        !           220:          Z( I ) = SIGN( SQRT( ABS( WORK( IWK3I+I ) ) ), Z( I ) )
        !           221:    50 CONTINUE
        !           222: *
        !           223: *     Update VF and VL.
        !           224: *
        !           225:       DO 80 J = 1, K
        !           226:          DIFLJ = DIFL( J )
        !           227:          DJ = D( J )
        !           228:          DSIGJ = -DSIGMA( J )
        !           229:          IF( J.LT.K ) THEN
        !           230:             DIFRJ = -DIFR( J, 1 )
        !           231:             DSIGJP = -DSIGMA( J+1 )
        !           232:          END IF
        !           233:          WORK( J ) = -Z( J ) / DIFLJ / ( DSIGMA( J )+DJ )
        !           234:          DO 60 I = 1, J - 1
        !           235:             WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJ )-DIFLJ )
        !           236:      $                   / ( DSIGMA( I )+DJ )
        !           237:    60    CONTINUE
        !           238:          DO 70 I = J + 1, K
        !           239:             WORK( I ) = Z( I ) / ( DLAMC3( DSIGMA( I ), DSIGJP )+DIFRJ )
        !           240:      $                   / ( DSIGMA( I )+DJ )
        !           241:    70    CONTINUE
        !           242:          TEMP = DNRM2( K, WORK, 1 )
        !           243:          WORK( IWK2I+J ) = DDOT( K, WORK, 1, VF, 1 ) / TEMP
        !           244:          WORK( IWK3I+J ) = DDOT( K, WORK, 1, VL, 1 ) / TEMP
        !           245:          IF( ICOMPQ.EQ.1 ) THEN
        !           246:             DIFR( J, 2 ) = TEMP
        !           247:          END IF
        !           248:    80 CONTINUE
        !           249: *
        !           250:       CALL DCOPY( K, WORK( IWK2 ), 1, VF, 1 )
        !           251:       CALL DCOPY( K, WORK( IWK3 ), 1, VL, 1 )
        !           252: *
        !           253:       RETURN
        !           254: *
        !           255: *     End of DLASD8
        !           256: *
        !           257:       END
        !           258: 

CVSweb interface <joel.bertrand@systella.fr>