File:  [local] / rpl / lapack / lapack / dlasd7.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:43 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
    2:      $                   VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
    3:      $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
    4:      $                   C, S, INFO )
    5: *
    6: *  -- LAPACK auxiliary routine (version 3.2) --
    7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    9: *     November 2006
   10: *
   11: *     .. Scalar Arguments ..
   12:       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
   13:      $                   NR, SQRE
   14:       DOUBLE PRECISION   ALPHA, BETA, C, S
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
   18:      $                   IDXQ( * ), PERM( * )
   19:       DOUBLE PRECISION   D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
   20:      $                   VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
   21:      $                   ZW( * )
   22: *     ..
   23: *
   24: *  Purpose
   25: *  =======
   26: *
   27: *  DLASD7 merges the two sets of singular values together into a single
   28: *  sorted set. Then it tries to deflate the size of the problem. There
   29: *  are two ways in which deflation can occur:  when two or more singular
   30: *  values are close together or if there is a tiny entry in the Z
   31: *  vector. For each such occurrence the order of the related
   32: *  secular equation problem is reduced by one.
   33: *
   34: *  DLASD7 is called from DLASD6.
   35: *
   36: *  Arguments
   37: *  =========
   38: *
   39: *  ICOMPQ  (input) INTEGER
   40: *          Specifies whether singular vectors are to be computed
   41: *          in compact form, as follows:
   42: *          = 0: Compute singular values only.
   43: *          = 1: Compute singular vectors of upper
   44: *               bidiagonal matrix in compact form.
   45: *
   46: *  NL     (input) INTEGER
   47: *         The row dimension of the upper block. NL >= 1.
   48: *
   49: *  NR     (input) INTEGER
   50: *         The row dimension of the lower block. NR >= 1.
   51: *
   52: *  SQRE   (input) INTEGER
   53: *         = 0: the lower block is an NR-by-NR square matrix.
   54: *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
   55: *
   56: *         The bidiagonal matrix has
   57: *         N = NL + NR + 1 rows and
   58: *         M = N + SQRE >= N columns.
   59: *
   60: *  K      (output) INTEGER
   61: *         Contains the dimension of the non-deflated matrix, this is
   62: *         the order of the related secular equation. 1 <= K <=N.
   63: *
   64: *  D      (input/output) DOUBLE PRECISION array, dimension ( N )
   65: *         On entry D contains the singular values of the two submatrices
   66: *         to be combined. On exit D contains the trailing (N-K) updated
   67: *         singular values (those which were deflated) sorted into
   68: *         increasing order.
   69: *
   70: *  Z      (output) DOUBLE PRECISION array, dimension ( M )
   71: *         On exit Z contains the updating row vector in the secular
   72: *         equation.
   73: *
   74: *  ZW     (workspace) DOUBLE PRECISION array, dimension ( M )
   75: *         Workspace for Z.
   76: *
   77: *  VF     (input/output) DOUBLE PRECISION array, dimension ( M )
   78: *         On entry, VF(1:NL+1) contains the first components of all
   79: *         right singular vectors of the upper block; and VF(NL+2:M)
   80: *         contains the first components of all right singular vectors
   81: *         of the lower block. On exit, VF contains the first components
   82: *         of all right singular vectors of the bidiagonal matrix.
   83: *
   84: *  VFW    (workspace) DOUBLE PRECISION array, dimension ( M )
   85: *         Workspace for VF.
   86: *
   87: *  VL     (input/output) DOUBLE PRECISION array, dimension ( M )
   88: *         On entry, VL(1:NL+1) contains the  last components of all
   89: *         right singular vectors of the upper block; and VL(NL+2:M)
   90: *         contains the last components of all right singular vectors
   91: *         of the lower block. On exit, VL contains the last components
   92: *         of all right singular vectors of the bidiagonal matrix.
   93: *
   94: *  VLW    (workspace) DOUBLE PRECISION array, dimension ( M )
   95: *         Workspace for VL.
   96: *
   97: *  ALPHA  (input) DOUBLE PRECISION
   98: *         Contains the diagonal element associated with the added row.
   99: *
  100: *  BETA   (input) DOUBLE PRECISION
  101: *         Contains the off-diagonal element associated with the added
  102: *         row.
  103: *
  104: *  DSIGMA (output) DOUBLE PRECISION array, dimension ( N )
  105: *         Contains a copy of the diagonal elements (K-1 singular values
  106: *         and one zero) in the secular equation.
  107: *
  108: *  IDX    (workspace) INTEGER array, dimension ( N )
  109: *         This will contain the permutation used to sort the contents of
  110: *         D into ascending order.
  111: *
  112: *  IDXP   (workspace) INTEGER array, dimension ( N )
  113: *         This will contain the permutation used to place deflated
  114: *         values of D at the end of the array. On output IDXP(2:K)
  115: *         points to the nondeflated D-values and IDXP(K+1:N)
  116: *         points to the deflated singular values.
  117: *
  118: *  IDXQ   (input) INTEGER array, dimension ( N )
  119: *         This contains the permutation which separately sorts the two
  120: *         sub-problems in D into ascending order.  Note that entries in
  121: *         the first half of this permutation must first be moved one
  122: *         position backward; and entries in the second half
  123: *         must first have NL+1 added to their values.
  124: *
  125: *  PERM   (output) INTEGER array, dimension ( N )
  126: *         The permutations (from deflation and sorting) to be applied
  127: *         to each singular block. Not referenced if ICOMPQ = 0.
  128: *
  129: *  GIVPTR (output) INTEGER
  130: *         The number of Givens rotations which took place in this
  131: *         subproblem. Not referenced if ICOMPQ = 0.
  132: *
  133: *  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
  134: *         Each pair of numbers indicates a pair of columns to take place
  135: *         in a Givens rotation. Not referenced if ICOMPQ = 0.
  136: *
  137: *  LDGCOL (input) INTEGER
  138: *         The leading dimension of GIVCOL, must be at least N.
  139: *
  140: *  GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
  141: *         Each number indicates the C or S value to be used in the
  142: *         corresponding Givens rotation. Not referenced if ICOMPQ = 0.
  143: *
  144: *  LDGNUM (input) INTEGER
  145: *         The leading dimension of GIVNUM, must be at least N.
  146: *
  147: *  C      (output) DOUBLE PRECISION
  148: *         C contains garbage if SQRE =0 and the C-value of a Givens
  149: *         rotation related to the right null space if SQRE = 1.
  150: *
  151: *  S      (output) DOUBLE PRECISION
  152: *         S contains garbage if SQRE =0 and the S-value of a Givens
  153: *         rotation related to the right null space if SQRE = 1.
  154: *
  155: *  INFO   (output) INTEGER
  156: *         = 0:  successful exit.
  157: *         < 0:  if INFO = -i, the i-th argument had an illegal value.
  158: *
  159: *  Further Details
  160: *  ===============
  161: *
  162: *  Based on contributions by
  163: *     Ming Gu and Huan Ren, Computer Science Division, University of
  164: *     California at Berkeley, USA
  165: *
  166: *  =====================================================================
  167: *
  168: *     .. Parameters ..
  169:       DOUBLE PRECISION   ZERO, ONE, TWO, EIGHT
  170:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
  171:      $                   EIGHT = 8.0D+0 )
  172: *     ..
  173: *     .. Local Scalars ..
  174: *
  175:       INTEGER            I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M, N,
  176:      $                   NLP1, NLP2
  177:       DOUBLE PRECISION   EPS, HLFTOL, TAU, TOL, Z1
  178: *     ..
  179: *     .. External Subroutines ..
  180:       EXTERNAL           DCOPY, DLAMRG, DROT, XERBLA
  181: *     ..
  182: *     .. External Functions ..
  183:       DOUBLE PRECISION   DLAMCH, DLAPY2
  184:       EXTERNAL           DLAMCH, DLAPY2
  185: *     ..
  186: *     .. Intrinsic Functions ..
  187:       INTRINSIC          ABS, MAX
  188: *     ..
  189: *     .. Executable Statements ..
  190: *
  191: *     Test the input parameters.
  192: *
  193:       INFO = 0
  194:       N = NL + NR + 1
  195:       M = N + SQRE
  196: *
  197:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
  198:          INFO = -1
  199:       ELSE IF( NL.LT.1 ) THEN
  200:          INFO = -2
  201:       ELSE IF( NR.LT.1 ) THEN
  202:          INFO = -3
  203:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
  204:          INFO = -4
  205:       ELSE IF( LDGCOL.LT.N ) THEN
  206:          INFO = -22
  207:       ELSE IF( LDGNUM.LT.N ) THEN
  208:          INFO = -24
  209:       END IF
  210:       IF( INFO.NE.0 ) THEN
  211:          CALL XERBLA( 'DLASD7', -INFO )
  212:          RETURN
  213:       END IF
  214: *
  215:       NLP1 = NL + 1
  216:       NLP2 = NL + 2
  217:       IF( ICOMPQ.EQ.1 ) THEN
  218:          GIVPTR = 0
  219:       END IF
  220: *
  221: *     Generate the first part of the vector Z and move the singular
  222: *     values in the first part of D one position backward.
  223: *
  224:       Z1 = ALPHA*VL( NLP1 )
  225:       VL( NLP1 ) = ZERO
  226:       TAU = VF( NLP1 )
  227:       DO 10 I = NL, 1, -1
  228:          Z( I+1 ) = ALPHA*VL( I )
  229:          VL( I ) = ZERO
  230:          VF( I+1 ) = VF( I )
  231:          D( I+1 ) = D( I )
  232:          IDXQ( I+1 ) = IDXQ( I ) + 1
  233:    10 CONTINUE
  234:       VF( 1 ) = TAU
  235: *
  236: *     Generate the second part of the vector Z.
  237: *
  238:       DO 20 I = NLP2, M
  239:          Z( I ) = BETA*VF( I )
  240:          VF( I ) = ZERO
  241:    20 CONTINUE
  242: *
  243: *     Sort the singular values into increasing order
  244: *
  245:       DO 30 I = NLP2, N
  246:          IDXQ( I ) = IDXQ( I ) + NLP1
  247:    30 CONTINUE
  248: *
  249: *     DSIGMA, IDXC, IDXC, and ZW are used as storage space.
  250: *
  251:       DO 40 I = 2, N
  252:          DSIGMA( I ) = D( IDXQ( I ) )
  253:          ZW( I ) = Z( IDXQ( I ) )
  254:          VFW( I ) = VF( IDXQ( I ) )
  255:          VLW( I ) = VL( IDXQ( I ) )
  256:    40 CONTINUE
  257: *
  258:       CALL DLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
  259: *
  260:       DO 50 I = 2, N
  261:          IDXI = 1 + IDX( I )
  262:          D( I ) = DSIGMA( IDXI )
  263:          Z( I ) = ZW( IDXI )
  264:          VF( I ) = VFW( IDXI )
  265:          VL( I ) = VLW( IDXI )
  266:    50 CONTINUE
  267: *
  268: *     Calculate the allowable deflation tolerence
  269: *
  270:       EPS = DLAMCH( 'Epsilon' )
  271:       TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
  272:       TOL = EIGHT*EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
  273: *
  274: *     There are 2 kinds of deflation -- first a value in the z-vector
  275: *     is small, second two (or more) singular values are very close
  276: *     together (their difference is small).
  277: *
  278: *     If the value in the z-vector is small, we simply permute the
  279: *     array so that the corresponding singular value is moved to the
  280: *     end.
  281: *
  282: *     If two values in the D-vector are close, we perform a two-sided
  283: *     rotation designed to make one of the corresponding z-vector
  284: *     entries zero, and then permute the array so that the deflated
  285: *     singular value is moved to the end.
  286: *
  287: *     If there are multiple singular values then the problem deflates.
  288: *     Here the number of equal singular values are found.  As each equal
  289: *     singular value is found, an elementary reflector is computed to
  290: *     rotate the corresponding singular subspace so that the
  291: *     corresponding components of Z are zero in this new basis.
  292: *
  293:       K = 1
  294:       K2 = N + 1
  295:       DO 60 J = 2, N
  296:          IF( ABS( Z( J ) ).LE.TOL ) THEN
  297: *
  298: *           Deflate due to small z component.
  299: *
  300:             K2 = K2 - 1
  301:             IDXP( K2 ) = J
  302:             IF( J.EQ.N )
  303:      $         GO TO 100
  304:          ELSE
  305:             JPREV = J
  306:             GO TO 70
  307:          END IF
  308:    60 CONTINUE
  309:    70 CONTINUE
  310:       J = JPREV
  311:    80 CONTINUE
  312:       J = J + 1
  313:       IF( J.GT.N )
  314:      $   GO TO 90
  315:       IF( ABS( Z( J ) ).LE.TOL ) THEN
  316: *
  317: *        Deflate due to small z component.
  318: *
  319:          K2 = K2 - 1
  320:          IDXP( K2 ) = J
  321:       ELSE
  322: *
  323: *        Check if singular values are close enough to allow deflation.
  324: *
  325:          IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
  326: *
  327: *           Deflation is possible.
  328: *
  329:             S = Z( JPREV )
  330:             C = Z( J )
  331: *
  332: *           Find sqrt(a**2+b**2) without overflow or
  333: *           destructive underflow.
  334: *
  335:             TAU = DLAPY2( C, S )
  336:             Z( J ) = TAU
  337:             Z( JPREV ) = ZERO
  338:             C = C / TAU
  339:             S = -S / TAU
  340: *
  341: *           Record the appropriate Givens rotation
  342: *
  343:             IF( ICOMPQ.EQ.1 ) THEN
  344:                GIVPTR = GIVPTR + 1
  345:                IDXJP = IDXQ( IDX( JPREV )+1 )
  346:                IDXJ = IDXQ( IDX( J )+1 )
  347:                IF( IDXJP.LE.NLP1 ) THEN
  348:                   IDXJP = IDXJP - 1
  349:                END IF
  350:                IF( IDXJ.LE.NLP1 ) THEN
  351:                   IDXJ = IDXJ - 1
  352:                END IF
  353:                GIVCOL( GIVPTR, 2 ) = IDXJP
  354:                GIVCOL( GIVPTR, 1 ) = IDXJ
  355:                GIVNUM( GIVPTR, 2 ) = C
  356:                GIVNUM( GIVPTR, 1 ) = S
  357:             END IF
  358:             CALL DROT( 1, VF( JPREV ), 1, VF( J ), 1, C, S )
  359:             CALL DROT( 1, VL( JPREV ), 1, VL( J ), 1, C, S )
  360:             K2 = K2 - 1
  361:             IDXP( K2 ) = JPREV
  362:             JPREV = J
  363:          ELSE
  364:             K = K + 1
  365:             ZW( K ) = Z( JPREV )
  366:             DSIGMA( K ) = D( JPREV )
  367:             IDXP( K ) = JPREV
  368:             JPREV = J
  369:          END IF
  370:       END IF
  371:       GO TO 80
  372:    90 CONTINUE
  373: *
  374: *     Record the last singular value.
  375: *
  376:       K = K + 1
  377:       ZW( K ) = Z( JPREV )
  378:       DSIGMA( K ) = D( JPREV )
  379:       IDXP( K ) = JPREV
  380: *
  381:   100 CONTINUE
  382: *
  383: *     Sort the singular values into DSIGMA. The singular values which
  384: *     were not deflated go into the first K slots of DSIGMA, except
  385: *     that DSIGMA(1) is treated separately.
  386: *
  387:       DO 110 J = 2, N
  388:          JP = IDXP( J )
  389:          DSIGMA( J ) = D( JP )
  390:          VFW( J ) = VF( JP )
  391:          VLW( J ) = VL( JP )
  392:   110 CONTINUE
  393:       IF( ICOMPQ.EQ.1 ) THEN
  394:          DO 120 J = 2, N
  395:             JP = IDXP( J )
  396:             PERM( J ) = IDXQ( IDX( JP )+1 )
  397:             IF( PERM( J ).LE.NLP1 ) THEN
  398:                PERM( J ) = PERM( J ) - 1
  399:             END IF
  400:   120    CONTINUE
  401:       END IF
  402: *
  403: *     The deflated singular values go back into the last N - K slots of
  404: *     D.
  405: *
  406:       CALL DCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
  407: *
  408: *     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and
  409: *     VL(M).
  410: *
  411:       DSIGMA( 1 ) = ZERO
  412:       HLFTOL = TOL / TWO
  413:       IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
  414:      $   DSIGMA( 2 ) = HLFTOL
  415:       IF( M.GT.N ) THEN
  416:          Z( 1 ) = DLAPY2( Z1, Z( M ) )
  417:          IF( Z( 1 ).LE.TOL ) THEN
  418:             C = ONE
  419:             S = ZERO
  420:             Z( 1 ) = TOL
  421:          ELSE
  422:             C = Z1 / Z( 1 )
  423:             S = -Z( M ) / Z( 1 )
  424:          END IF
  425:          CALL DROT( 1, VF( M ), 1, VF( 1 ), 1, C, S )
  426:          CALL DROT( 1, VL( M ), 1, VL( 1 ), 1, C, S )
  427:       ELSE
  428:          IF( ABS( Z1 ).LE.TOL ) THEN
  429:             Z( 1 ) = TOL
  430:          ELSE
  431:             Z( 1 ) = Z1
  432:          END IF
  433:       END IF
  434: *
  435: *     Restore Z, VF, and VL.
  436: *
  437:       CALL DCOPY( K-1, ZW( 2 ), 1, Z( 2 ), 1 )
  438:       CALL DCOPY( N-1, VFW( 2 ), 1, VF( 2 ), 1 )
  439:       CALL DCOPY( N-1, VLW( 2 ), 1, VL( 2 ), 1 )
  440: *
  441:       RETURN
  442: *
  443: *     End of DLASD7
  444: *
  445:       END

CVSweb interface <joel.bertrand@systella.fr>