File:  [local] / rpl / lapack / lapack / dlasd7.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:59 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLASD7 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by sbdsdc.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLASD7 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd7.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd7.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd7.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
   22: *                          VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
   23: *                          PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
   24: *                          C, S, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
   28: *      $                   NR, SQRE
   29: *       DOUBLE PRECISION   ALPHA, BETA, C, S
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
   33: *      $                   IDXQ( * ), PERM( * )
   34: *       DOUBLE PRECISION   D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
   35: *      $                   VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
   36: *      $                   ZW( * )
   37: *       ..
   38: *
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> DLASD7 merges the two sets of singular values together into a single
   46: *> sorted set. Then it tries to deflate the size of the problem. There
   47: *> are two ways in which deflation can occur:  when two or more singular
   48: *> values are close together or if there is a tiny entry in the Z
   49: *> vector. For each such occurrence the order of the related
   50: *> secular equation problem is reduced by one.
   51: *>
   52: *> DLASD7 is called from DLASD6.
   53: *> \endverbatim
   54: *
   55: *  Arguments:
   56: *  ==========
   57: *
   58: *> \param[in] ICOMPQ
   59: *> \verbatim
   60: *>          ICOMPQ is INTEGER
   61: *>          Specifies whether singular vectors are to be computed
   62: *>          in compact form, as follows:
   63: *>          = 0: Compute singular values only.
   64: *>          = 1: Compute singular vectors of upper
   65: *>               bidiagonal matrix in compact form.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] NL
   69: *> \verbatim
   70: *>          NL is INTEGER
   71: *>         The row dimension of the upper block. NL >= 1.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] NR
   75: *> \verbatim
   76: *>          NR is INTEGER
   77: *>         The row dimension of the lower block. NR >= 1.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] SQRE
   81: *> \verbatim
   82: *>          SQRE is INTEGER
   83: *>         = 0: the lower block is an NR-by-NR square matrix.
   84: *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
   85: *>
   86: *>         The bidiagonal matrix has
   87: *>         N = NL + NR + 1 rows and
   88: *>         M = N + SQRE >= N columns.
   89: *> \endverbatim
   90: *>
   91: *> \param[out] K
   92: *> \verbatim
   93: *>          K is INTEGER
   94: *>         Contains the dimension of the non-deflated matrix, this is
   95: *>         the order of the related secular equation. 1 <= K <=N.
   96: *> \endverbatim
   97: *>
   98: *> \param[in,out] D
   99: *> \verbatim
  100: *>          D is DOUBLE PRECISION array, dimension ( N )
  101: *>         On entry D contains the singular values of the two submatrices
  102: *>         to be combined. On exit D contains the trailing (N-K) updated
  103: *>         singular values (those which were deflated) sorted into
  104: *>         increasing order.
  105: *> \endverbatim
  106: *>
  107: *> \param[out] Z
  108: *> \verbatim
  109: *>          Z is DOUBLE PRECISION array, dimension ( M )
  110: *>         On exit Z contains the updating row vector in the secular
  111: *>         equation.
  112: *> \endverbatim
  113: *>
  114: *> \param[out] ZW
  115: *> \verbatim
  116: *>          ZW is DOUBLE PRECISION array, dimension ( M )
  117: *>         Workspace for Z.
  118: *> \endverbatim
  119: *>
  120: *> \param[in,out] VF
  121: *> \verbatim
  122: *>          VF is DOUBLE PRECISION array, dimension ( M )
  123: *>         On entry, VF(1:NL+1) contains the first components of all
  124: *>         right singular vectors of the upper block; and VF(NL+2:M)
  125: *>         contains the first components of all right singular vectors
  126: *>         of the lower block. On exit, VF contains the first components
  127: *>         of all right singular vectors of the bidiagonal matrix.
  128: *> \endverbatim
  129: *>
  130: *> \param[out] VFW
  131: *> \verbatim
  132: *>          VFW is DOUBLE PRECISION array, dimension ( M )
  133: *>         Workspace for VF.
  134: *> \endverbatim
  135: *>
  136: *> \param[in,out] VL
  137: *> \verbatim
  138: *>          VL is DOUBLE PRECISION array, dimension ( M )
  139: *>         On entry, VL(1:NL+1) contains the  last components of all
  140: *>         right singular vectors of the upper block; and VL(NL+2:M)
  141: *>         contains the last components of all right singular vectors
  142: *>         of the lower block. On exit, VL contains the last components
  143: *>         of all right singular vectors of the bidiagonal matrix.
  144: *> \endverbatim
  145: *>
  146: *> \param[out] VLW
  147: *> \verbatim
  148: *>          VLW is DOUBLE PRECISION array, dimension ( M )
  149: *>         Workspace for VL.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] ALPHA
  153: *> \verbatim
  154: *>          ALPHA is DOUBLE PRECISION
  155: *>         Contains the diagonal element associated with the added row.
  156: *> \endverbatim
  157: *>
  158: *> \param[in] BETA
  159: *> \verbatim
  160: *>          BETA is DOUBLE PRECISION
  161: *>         Contains the off-diagonal element associated with the added
  162: *>         row.
  163: *> \endverbatim
  164: *>
  165: *> \param[out] DSIGMA
  166: *> \verbatim
  167: *>          DSIGMA is DOUBLE PRECISION array, dimension ( N )
  168: *>         Contains a copy of the diagonal elements (K-1 singular values
  169: *>         and one zero) in the secular equation.
  170: *> \endverbatim
  171: *>
  172: *> \param[out] IDX
  173: *> \verbatim
  174: *>          IDX is INTEGER array, dimension ( N )
  175: *>         This will contain the permutation used to sort the contents of
  176: *>         D into ascending order.
  177: *> \endverbatim
  178: *>
  179: *> \param[out] IDXP
  180: *> \verbatim
  181: *>          IDXP is INTEGER array, dimension ( N )
  182: *>         This will contain the permutation used to place deflated
  183: *>         values of D at the end of the array. On output IDXP(2:K)
  184: *>         points to the nondeflated D-values and IDXP(K+1:N)
  185: *>         points to the deflated singular values.
  186: *> \endverbatim
  187: *>
  188: *> \param[in] IDXQ
  189: *> \verbatim
  190: *>          IDXQ is INTEGER array, dimension ( N )
  191: *>         This contains the permutation which separately sorts the two
  192: *>         sub-problems in D into ascending order.  Note that entries in
  193: *>         the first half of this permutation must first be moved one
  194: *>         position backward; and entries in the second half
  195: *>         must first have NL+1 added to their values.
  196: *> \endverbatim
  197: *>
  198: *> \param[out] PERM
  199: *> \verbatim
  200: *>          PERM is INTEGER array, dimension ( N )
  201: *>         The permutations (from deflation and sorting) to be applied
  202: *>         to each singular block. Not referenced if ICOMPQ = 0.
  203: *> \endverbatim
  204: *>
  205: *> \param[out] GIVPTR
  206: *> \verbatim
  207: *>          GIVPTR is INTEGER
  208: *>         The number of Givens rotations which took place in this
  209: *>         subproblem. Not referenced if ICOMPQ = 0.
  210: *> \endverbatim
  211: *>
  212: *> \param[out] GIVCOL
  213: *> \verbatim
  214: *>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
  215: *>         Each pair of numbers indicates a pair of columns to take place
  216: *>         in a Givens rotation. Not referenced if ICOMPQ = 0.
  217: *> \endverbatim
  218: *>
  219: *> \param[in] LDGCOL
  220: *> \verbatim
  221: *>          LDGCOL is INTEGER
  222: *>         The leading dimension of GIVCOL, must be at least N.
  223: *> \endverbatim
  224: *>
  225: *> \param[out] GIVNUM
  226: *> \verbatim
  227: *>          GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
  228: *>         Each number indicates the C or S value to be used in the
  229: *>         corresponding Givens rotation. Not referenced if ICOMPQ = 0.
  230: *> \endverbatim
  231: *>
  232: *> \param[in] LDGNUM
  233: *> \verbatim
  234: *>          LDGNUM is INTEGER
  235: *>         The leading dimension of GIVNUM, must be at least N.
  236: *> \endverbatim
  237: *>
  238: *> \param[out] C
  239: *> \verbatim
  240: *>          C is DOUBLE PRECISION
  241: *>         C contains garbage if SQRE =0 and the C-value of a Givens
  242: *>         rotation related to the right null space if SQRE = 1.
  243: *> \endverbatim
  244: *>
  245: *> \param[out] S
  246: *> \verbatim
  247: *>          S is DOUBLE PRECISION
  248: *>         S contains garbage if SQRE =0 and the S-value of a Givens
  249: *>         rotation related to the right null space if SQRE = 1.
  250: *> \endverbatim
  251: *>
  252: *> \param[out] INFO
  253: *> \verbatim
  254: *>          INFO is INTEGER
  255: *>         = 0:  successful exit.
  256: *>         < 0:  if INFO = -i, the i-th argument had an illegal value.
  257: *> \endverbatim
  258: *
  259: *  Authors:
  260: *  ========
  261: *
  262: *> \author Univ. of Tennessee
  263: *> \author Univ. of California Berkeley
  264: *> \author Univ. of Colorado Denver
  265: *> \author NAG Ltd.
  266: *
  267: *> \ingroup OTHERauxiliary
  268: *
  269: *> \par Contributors:
  270: *  ==================
  271: *>
  272: *>     Ming Gu and Huan Ren, Computer Science Division, University of
  273: *>     California at Berkeley, USA
  274: *>
  275: *  =====================================================================
  276:       SUBROUTINE DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
  277:      $                   VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
  278:      $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
  279:      $                   C, S, INFO )
  280: *
  281: *  -- LAPACK auxiliary routine --
  282: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  283: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  284: *
  285: *     .. Scalar Arguments ..
  286:       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
  287:      $                   NR, SQRE
  288:       DOUBLE PRECISION   ALPHA, BETA, C, S
  289: *     ..
  290: *     .. Array Arguments ..
  291:       INTEGER            GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
  292:      $                   IDXQ( * ), PERM( * )
  293:       DOUBLE PRECISION   D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
  294:      $                   VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
  295:      $                   ZW( * )
  296: *     ..
  297: *
  298: *  =====================================================================
  299: *
  300: *     .. Parameters ..
  301:       DOUBLE PRECISION   ZERO, ONE, TWO, EIGHT
  302:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
  303:      $                   EIGHT = 8.0D+0 )
  304: *     ..
  305: *     .. Local Scalars ..
  306: *
  307:       INTEGER            I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M, N,
  308:      $                   NLP1, NLP2
  309:       DOUBLE PRECISION   EPS, HLFTOL, TAU, TOL, Z1
  310: *     ..
  311: *     .. External Subroutines ..
  312:       EXTERNAL           DCOPY, DLAMRG, DROT, XERBLA
  313: *     ..
  314: *     .. External Functions ..
  315:       DOUBLE PRECISION   DLAMCH, DLAPY2
  316:       EXTERNAL           DLAMCH, DLAPY2
  317: *     ..
  318: *     .. Intrinsic Functions ..
  319:       INTRINSIC          ABS, MAX
  320: *     ..
  321: *     .. Executable Statements ..
  322: *
  323: *     Test the input parameters.
  324: *
  325:       INFO = 0
  326:       N = NL + NR + 1
  327:       M = N + SQRE
  328: *
  329:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
  330:          INFO = -1
  331:       ELSE IF( NL.LT.1 ) THEN
  332:          INFO = -2
  333:       ELSE IF( NR.LT.1 ) THEN
  334:          INFO = -3
  335:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
  336:          INFO = -4
  337:       ELSE IF( LDGCOL.LT.N ) THEN
  338:          INFO = -22
  339:       ELSE IF( LDGNUM.LT.N ) THEN
  340:          INFO = -24
  341:       END IF
  342:       IF( INFO.NE.0 ) THEN
  343:          CALL XERBLA( 'DLASD7', -INFO )
  344:          RETURN
  345:       END IF
  346: *
  347:       NLP1 = NL + 1
  348:       NLP2 = NL + 2
  349:       IF( ICOMPQ.EQ.1 ) THEN
  350:          GIVPTR = 0
  351:       END IF
  352: *
  353: *     Generate the first part of the vector Z and move the singular
  354: *     values in the first part of D one position backward.
  355: *
  356:       Z1 = ALPHA*VL( NLP1 )
  357:       VL( NLP1 ) = ZERO
  358:       TAU = VF( NLP1 )
  359:       DO 10 I = NL, 1, -1
  360:          Z( I+1 ) = ALPHA*VL( I )
  361:          VL( I ) = ZERO
  362:          VF( I+1 ) = VF( I )
  363:          D( I+1 ) = D( I )
  364:          IDXQ( I+1 ) = IDXQ( I ) + 1
  365:    10 CONTINUE
  366:       VF( 1 ) = TAU
  367: *
  368: *     Generate the second part of the vector Z.
  369: *
  370:       DO 20 I = NLP2, M
  371:          Z( I ) = BETA*VF( I )
  372:          VF( I ) = ZERO
  373:    20 CONTINUE
  374: *
  375: *     Sort the singular values into increasing order
  376: *
  377:       DO 30 I = NLP2, N
  378:          IDXQ( I ) = IDXQ( I ) + NLP1
  379:    30 CONTINUE
  380: *
  381: *     DSIGMA, IDXC, IDXC, and ZW are used as storage space.
  382: *
  383:       DO 40 I = 2, N
  384:          DSIGMA( I ) = D( IDXQ( I ) )
  385:          ZW( I ) = Z( IDXQ( I ) )
  386:          VFW( I ) = VF( IDXQ( I ) )
  387:          VLW( I ) = VL( IDXQ( I ) )
  388:    40 CONTINUE
  389: *
  390:       CALL DLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
  391: *
  392:       DO 50 I = 2, N
  393:          IDXI = 1 + IDX( I )
  394:          D( I ) = DSIGMA( IDXI )
  395:          Z( I ) = ZW( IDXI )
  396:          VF( I ) = VFW( IDXI )
  397:          VL( I ) = VLW( IDXI )
  398:    50 CONTINUE
  399: *
  400: *     Calculate the allowable deflation tolerance
  401: *
  402:       EPS = DLAMCH( 'Epsilon' )
  403:       TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
  404:       TOL = EIGHT*EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
  405: *
  406: *     There are 2 kinds of deflation -- first a value in the z-vector
  407: *     is small, second two (or more) singular values are very close
  408: *     together (their difference is small).
  409: *
  410: *     If the value in the z-vector is small, we simply permute the
  411: *     array so that the corresponding singular value is moved to the
  412: *     end.
  413: *
  414: *     If two values in the D-vector are close, we perform a two-sided
  415: *     rotation designed to make one of the corresponding z-vector
  416: *     entries zero, and then permute the array so that the deflated
  417: *     singular value is moved to the end.
  418: *
  419: *     If there are multiple singular values then the problem deflates.
  420: *     Here the number of equal singular values are found.  As each equal
  421: *     singular value is found, an elementary reflector is computed to
  422: *     rotate the corresponding singular subspace so that the
  423: *     corresponding components of Z are zero in this new basis.
  424: *
  425:       K = 1
  426:       K2 = N + 1
  427:       DO 60 J = 2, N
  428:          IF( ABS( Z( J ) ).LE.TOL ) THEN
  429: *
  430: *           Deflate due to small z component.
  431: *
  432:             K2 = K2 - 1
  433:             IDXP( K2 ) = J
  434:             IF( J.EQ.N )
  435:      $         GO TO 100
  436:          ELSE
  437:             JPREV = J
  438:             GO TO 70
  439:          END IF
  440:    60 CONTINUE
  441:    70 CONTINUE
  442:       J = JPREV
  443:    80 CONTINUE
  444:       J = J + 1
  445:       IF( J.GT.N )
  446:      $   GO TO 90
  447:       IF( ABS( Z( J ) ).LE.TOL ) THEN
  448: *
  449: *        Deflate due to small z component.
  450: *
  451:          K2 = K2 - 1
  452:          IDXP( K2 ) = J
  453:       ELSE
  454: *
  455: *        Check if singular values are close enough to allow deflation.
  456: *
  457:          IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
  458: *
  459: *           Deflation is possible.
  460: *
  461:             S = Z( JPREV )
  462:             C = Z( J )
  463: *
  464: *           Find sqrt(a**2+b**2) without overflow or
  465: *           destructive underflow.
  466: *
  467:             TAU = DLAPY2( C, S )
  468:             Z( J ) = TAU
  469:             Z( JPREV ) = ZERO
  470:             C = C / TAU
  471:             S = -S / TAU
  472: *
  473: *           Record the appropriate Givens rotation
  474: *
  475:             IF( ICOMPQ.EQ.1 ) THEN
  476:                GIVPTR = GIVPTR + 1
  477:                IDXJP = IDXQ( IDX( JPREV )+1 )
  478:                IDXJ = IDXQ( IDX( J )+1 )
  479:                IF( IDXJP.LE.NLP1 ) THEN
  480:                   IDXJP = IDXJP - 1
  481:                END IF
  482:                IF( IDXJ.LE.NLP1 ) THEN
  483:                   IDXJ = IDXJ - 1
  484:                END IF
  485:                GIVCOL( GIVPTR, 2 ) = IDXJP
  486:                GIVCOL( GIVPTR, 1 ) = IDXJ
  487:                GIVNUM( GIVPTR, 2 ) = C
  488:                GIVNUM( GIVPTR, 1 ) = S
  489:             END IF
  490:             CALL DROT( 1, VF( JPREV ), 1, VF( J ), 1, C, S )
  491:             CALL DROT( 1, VL( JPREV ), 1, VL( J ), 1, C, S )
  492:             K2 = K2 - 1
  493:             IDXP( K2 ) = JPREV
  494:             JPREV = J
  495:          ELSE
  496:             K = K + 1
  497:             ZW( K ) = Z( JPREV )
  498:             DSIGMA( K ) = D( JPREV )
  499:             IDXP( K ) = JPREV
  500:             JPREV = J
  501:          END IF
  502:       END IF
  503:       GO TO 80
  504:    90 CONTINUE
  505: *
  506: *     Record the last singular value.
  507: *
  508:       K = K + 1
  509:       ZW( K ) = Z( JPREV )
  510:       DSIGMA( K ) = D( JPREV )
  511:       IDXP( K ) = JPREV
  512: *
  513:   100 CONTINUE
  514: *
  515: *     Sort the singular values into DSIGMA. The singular values which
  516: *     were not deflated go into the first K slots of DSIGMA, except
  517: *     that DSIGMA(1) is treated separately.
  518: *
  519:       DO 110 J = 2, N
  520:          JP = IDXP( J )
  521:          DSIGMA( J ) = D( JP )
  522:          VFW( J ) = VF( JP )
  523:          VLW( J ) = VL( JP )
  524:   110 CONTINUE
  525:       IF( ICOMPQ.EQ.1 ) THEN
  526:          DO 120 J = 2, N
  527:             JP = IDXP( J )
  528:             PERM( J ) = IDXQ( IDX( JP )+1 )
  529:             IF( PERM( J ).LE.NLP1 ) THEN
  530:                PERM( J ) = PERM( J ) - 1
  531:             END IF
  532:   120    CONTINUE
  533:       END IF
  534: *
  535: *     The deflated singular values go back into the last N - K slots of
  536: *     D.
  537: *
  538:       CALL DCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
  539: *
  540: *     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and
  541: *     VL(M).
  542: *
  543:       DSIGMA( 1 ) = ZERO
  544:       HLFTOL = TOL / TWO
  545:       IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
  546:      $   DSIGMA( 2 ) = HLFTOL
  547:       IF( M.GT.N ) THEN
  548:          Z( 1 ) = DLAPY2( Z1, Z( M ) )
  549:          IF( Z( 1 ).LE.TOL ) THEN
  550:             C = ONE
  551:             S = ZERO
  552:             Z( 1 ) = TOL
  553:          ELSE
  554:             C = Z1 / Z( 1 )
  555:             S = -Z( M ) / Z( 1 )
  556:          END IF
  557:          CALL DROT( 1, VF( M ), 1, VF( 1 ), 1, C, S )
  558:          CALL DROT( 1, VL( M ), 1, VL( 1 ), 1, C, S )
  559:       ELSE
  560:          IF( ABS( Z1 ).LE.TOL ) THEN
  561:             Z( 1 ) = TOL
  562:          ELSE
  563:             Z( 1 ) = Z1
  564:          END IF
  565:       END IF
  566: *
  567: *     Restore Z, VF, and VL.
  568: *
  569:       CALL DCOPY( K-1, ZW( 2 ), 1, Z( 2 ), 1 )
  570:       CALL DCOPY( N-1, VFW( 2 ), 1, VF( 2 ), 1 )
  571:       CALL DCOPY( N-1, VLW( 2 ), 1, VL( 2 ), 1 )
  572: *
  573:       RETURN
  574: *
  575: *     End of DLASD7
  576: *
  577:       END

CVSweb interface <joel.bertrand@systella.fr>