Annotation of rpl/lapack/lapack/dlasd7.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b DLASD7
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLASD7 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd7.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd7.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd7.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
        !            22: *                          VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
        !            23: *                          PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
        !            24: *                          C, S, INFO )
        !            25: * 
        !            26: *       .. Scalar Arguments ..
        !            27: *       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
        !            28: *      $                   NR, SQRE
        !            29: *       DOUBLE PRECISION   ALPHA, BETA, C, S
        !            30: *       ..
        !            31: *       .. Array Arguments ..
        !            32: *       INTEGER            GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
        !            33: *      $                   IDXQ( * ), PERM( * )
        !            34: *       DOUBLE PRECISION   D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
        !            35: *      $                   VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
        !            36: *      $                   ZW( * )
        !            37: *       ..
        !            38: *  
        !            39: *
        !            40: *> \par Purpose:
        !            41: *  =============
        !            42: *>
        !            43: *> \verbatim
        !            44: *>
        !            45: *> DLASD7 merges the two sets of singular values together into a single
        !            46: *> sorted set. Then it tries to deflate the size of the problem. There
        !            47: *> are two ways in which deflation can occur:  when two or more singular
        !            48: *> values are close together or if there is a tiny entry in the Z
        !            49: *> vector. For each such occurrence the order of the related
        !            50: *> secular equation problem is reduced by one.
        !            51: *>
        !            52: *> DLASD7 is called from DLASD6.
        !            53: *> \endverbatim
        !            54: *
        !            55: *  Arguments:
        !            56: *  ==========
        !            57: *
        !            58: *> \param[in] ICOMPQ
        !            59: *> \verbatim
        !            60: *>          ICOMPQ is INTEGER
        !            61: *>          Specifies whether singular vectors are to be computed
        !            62: *>          in compact form, as follows:
        !            63: *>          = 0: Compute singular values only.
        !            64: *>          = 1: Compute singular vectors of upper
        !            65: *>               bidiagonal matrix in compact form.
        !            66: *> \endverbatim
        !            67: *>
        !            68: *> \param[in] NL
        !            69: *> \verbatim
        !            70: *>          NL is INTEGER
        !            71: *>         The row dimension of the upper block. NL >= 1.
        !            72: *> \endverbatim
        !            73: *>
        !            74: *> \param[in] NR
        !            75: *> \verbatim
        !            76: *>          NR is INTEGER
        !            77: *>         The row dimension of the lower block. NR >= 1.
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[in] SQRE
        !            81: *> \verbatim
        !            82: *>          SQRE is INTEGER
        !            83: *>         = 0: the lower block is an NR-by-NR square matrix.
        !            84: *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
        !            85: *>
        !            86: *>         The bidiagonal matrix has
        !            87: *>         N = NL + NR + 1 rows and
        !            88: *>         M = N + SQRE >= N columns.
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[out] K
        !            92: *> \verbatim
        !            93: *>          K is INTEGER
        !            94: *>         Contains the dimension of the non-deflated matrix, this is
        !            95: *>         the order of the related secular equation. 1 <= K <=N.
        !            96: *> \endverbatim
        !            97: *>
        !            98: *> \param[in,out] D
        !            99: *> \verbatim
        !           100: *>          D is DOUBLE PRECISION array, dimension ( N )
        !           101: *>         On entry D contains the singular values of the two submatrices
        !           102: *>         to be combined. On exit D contains the trailing (N-K) updated
        !           103: *>         singular values (those which were deflated) sorted into
        !           104: *>         increasing order.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[out] Z
        !           108: *> \verbatim
        !           109: *>          Z is DOUBLE PRECISION array, dimension ( M )
        !           110: *>         On exit Z contains the updating row vector in the secular
        !           111: *>         equation.
        !           112: *> \endverbatim
        !           113: *>
        !           114: *> \param[out] ZW
        !           115: *> \verbatim
        !           116: *>          ZW is DOUBLE PRECISION array, dimension ( M )
        !           117: *>         Workspace for Z.
        !           118: *> \endverbatim
        !           119: *>
        !           120: *> \param[in,out] VF
        !           121: *> \verbatim
        !           122: *>          VF is DOUBLE PRECISION array, dimension ( M )
        !           123: *>         On entry, VF(1:NL+1) contains the first components of all
        !           124: *>         right singular vectors of the upper block; and VF(NL+2:M)
        !           125: *>         contains the first components of all right singular vectors
        !           126: *>         of the lower block. On exit, VF contains the first components
        !           127: *>         of all right singular vectors of the bidiagonal matrix.
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[out] VFW
        !           131: *> \verbatim
        !           132: *>          VFW is DOUBLE PRECISION array, dimension ( M )
        !           133: *>         Workspace for VF.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in,out] VL
        !           137: *> \verbatim
        !           138: *>          VL is DOUBLE PRECISION array, dimension ( M )
        !           139: *>         On entry, VL(1:NL+1) contains the  last components of all
        !           140: *>         right singular vectors of the upper block; and VL(NL+2:M)
        !           141: *>         contains the last components of all right singular vectors
        !           142: *>         of the lower block. On exit, VL contains the last components
        !           143: *>         of all right singular vectors of the bidiagonal matrix.
        !           144: *> \endverbatim
        !           145: *>
        !           146: *> \param[out] VLW
        !           147: *> \verbatim
        !           148: *>          VLW is DOUBLE PRECISION array, dimension ( M )
        !           149: *>         Workspace for VL.
        !           150: *> \endverbatim
        !           151: *>
        !           152: *> \param[in] ALPHA
        !           153: *> \verbatim
        !           154: *>          ALPHA is DOUBLE PRECISION
        !           155: *>         Contains the diagonal element associated with the added row.
        !           156: *> \endverbatim
        !           157: *>
        !           158: *> \param[in] BETA
        !           159: *> \verbatim
        !           160: *>          BETA is DOUBLE PRECISION
        !           161: *>         Contains the off-diagonal element associated with the added
        !           162: *>         row.
        !           163: *> \endverbatim
        !           164: *>
        !           165: *> \param[out] DSIGMA
        !           166: *> \verbatim
        !           167: *>          DSIGMA is DOUBLE PRECISION array, dimension ( N )
        !           168: *>         Contains a copy of the diagonal elements (K-1 singular values
        !           169: *>         and one zero) in the secular equation.
        !           170: *> \endverbatim
        !           171: *>
        !           172: *> \param[out] IDX
        !           173: *> \verbatim
        !           174: *>          IDX is INTEGER array, dimension ( N )
        !           175: *>         This will contain the permutation used to sort the contents of
        !           176: *>         D into ascending order.
        !           177: *> \endverbatim
        !           178: *>
        !           179: *> \param[out] IDXP
        !           180: *> \verbatim
        !           181: *>          IDXP is INTEGER array, dimension ( N )
        !           182: *>         This will contain the permutation used to place deflated
        !           183: *>         values of D at the end of the array. On output IDXP(2:K)
        !           184: *>         points to the nondeflated D-values and IDXP(K+1:N)
        !           185: *>         points to the deflated singular values.
        !           186: *> \endverbatim
        !           187: *>
        !           188: *> \param[in] IDXQ
        !           189: *> \verbatim
        !           190: *>          IDXQ is INTEGER array, dimension ( N )
        !           191: *>         This contains the permutation which separately sorts the two
        !           192: *>         sub-problems in D into ascending order.  Note that entries in
        !           193: *>         the first half of this permutation must first be moved one
        !           194: *>         position backward; and entries in the second half
        !           195: *>         must first have NL+1 added to their values.
        !           196: *> \endverbatim
        !           197: *>
        !           198: *> \param[out] PERM
        !           199: *> \verbatim
        !           200: *>          PERM is INTEGER array, dimension ( N )
        !           201: *>         The permutations (from deflation and sorting) to be applied
        !           202: *>         to each singular block. Not referenced if ICOMPQ = 0.
        !           203: *> \endverbatim
        !           204: *>
        !           205: *> \param[out] GIVPTR
        !           206: *> \verbatim
        !           207: *>          GIVPTR is INTEGER
        !           208: *>         The number of Givens rotations which took place in this
        !           209: *>         subproblem. Not referenced if ICOMPQ = 0.
        !           210: *> \endverbatim
        !           211: *>
        !           212: *> \param[out] GIVCOL
        !           213: *> \verbatim
        !           214: *>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
        !           215: *>         Each pair of numbers indicates a pair of columns to take place
        !           216: *>         in a Givens rotation. Not referenced if ICOMPQ = 0.
        !           217: *> \endverbatim
        !           218: *>
        !           219: *> \param[in] LDGCOL
        !           220: *> \verbatim
        !           221: *>          LDGCOL is INTEGER
        !           222: *>         The leading dimension of GIVCOL, must be at least N.
        !           223: *> \endverbatim
        !           224: *>
        !           225: *> \param[out] GIVNUM
        !           226: *> \verbatim
        !           227: *>          GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
        !           228: *>         Each number indicates the C or S value to be used in the
        !           229: *>         corresponding Givens rotation. Not referenced if ICOMPQ = 0.
        !           230: *> \endverbatim
        !           231: *>
        !           232: *> \param[in] LDGNUM
        !           233: *> \verbatim
        !           234: *>          LDGNUM is INTEGER
        !           235: *>         The leading dimension of GIVNUM, must be at least N.
        !           236: *> \endverbatim
        !           237: *>
        !           238: *> \param[out] C
        !           239: *> \verbatim
        !           240: *>          C is DOUBLE PRECISION
        !           241: *>         C contains garbage if SQRE =0 and the C-value of a Givens
        !           242: *>         rotation related to the right null space if SQRE = 1.
        !           243: *> \endverbatim
        !           244: *>
        !           245: *> \param[out] S
        !           246: *> \verbatim
        !           247: *>          S is DOUBLE PRECISION
        !           248: *>         S contains garbage if SQRE =0 and the S-value of a Givens
        !           249: *>         rotation related to the right null space if SQRE = 1.
        !           250: *> \endverbatim
        !           251: *>
        !           252: *> \param[out] INFO
        !           253: *> \verbatim
        !           254: *>          INFO is INTEGER
        !           255: *>         = 0:  successful exit.
        !           256: *>         < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           257: *> \endverbatim
        !           258: *
        !           259: *  Authors:
        !           260: *  ========
        !           261: *
        !           262: *> \author Univ. of Tennessee 
        !           263: *> \author Univ. of California Berkeley 
        !           264: *> \author Univ. of Colorado Denver 
        !           265: *> \author NAG Ltd. 
        !           266: *
        !           267: *> \date November 2011
        !           268: *
        !           269: *> \ingroup auxOTHERauxiliary
        !           270: *
        !           271: *> \par Contributors:
        !           272: *  ==================
        !           273: *>
        !           274: *>     Ming Gu and Huan Ren, Computer Science Division, University of
        !           275: *>     California at Berkeley, USA
        !           276: *>
        !           277: *  =====================================================================
1.1       bertrand  278:       SUBROUTINE DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
                    279:      $                   VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
                    280:      $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
                    281:      $                   C, S, INFO )
                    282: *
1.8     ! bertrand  283: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  284: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    285: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  286: *     November 2011
1.1       bertrand  287: *
                    288: *     .. Scalar Arguments ..
                    289:       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
                    290:      $                   NR, SQRE
                    291:       DOUBLE PRECISION   ALPHA, BETA, C, S
                    292: *     ..
                    293: *     .. Array Arguments ..
                    294:       INTEGER            GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
                    295:      $                   IDXQ( * ), PERM( * )
                    296:       DOUBLE PRECISION   D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
                    297:      $                   VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
                    298:      $                   ZW( * )
                    299: *     ..
                    300: *
                    301: *  =====================================================================
                    302: *
                    303: *     .. Parameters ..
                    304:       DOUBLE PRECISION   ZERO, ONE, TWO, EIGHT
                    305:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
                    306:      $                   EIGHT = 8.0D+0 )
                    307: *     ..
                    308: *     .. Local Scalars ..
                    309: *
                    310:       INTEGER            I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M, N,
                    311:      $                   NLP1, NLP2
                    312:       DOUBLE PRECISION   EPS, HLFTOL, TAU, TOL, Z1
                    313: *     ..
                    314: *     .. External Subroutines ..
                    315:       EXTERNAL           DCOPY, DLAMRG, DROT, XERBLA
                    316: *     ..
                    317: *     .. External Functions ..
                    318:       DOUBLE PRECISION   DLAMCH, DLAPY2
                    319:       EXTERNAL           DLAMCH, DLAPY2
                    320: *     ..
                    321: *     .. Intrinsic Functions ..
                    322:       INTRINSIC          ABS, MAX
                    323: *     ..
                    324: *     .. Executable Statements ..
                    325: *
                    326: *     Test the input parameters.
                    327: *
                    328:       INFO = 0
                    329:       N = NL + NR + 1
                    330:       M = N + SQRE
                    331: *
                    332:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    333:          INFO = -1
                    334:       ELSE IF( NL.LT.1 ) THEN
                    335:          INFO = -2
                    336:       ELSE IF( NR.LT.1 ) THEN
                    337:          INFO = -3
                    338:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
                    339:          INFO = -4
                    340:       ELSE IF( LDGCOL.LT.N ) THEN
                    341:          INFO = -22
                    342:       ELSE IF( LDGNUM.LT.N ) THEN
                    343:          INFO = -24
                    344:       END IF
                    345:       IF( INFO.NE.0 ) THEN
                    346:          CALL XERBLA( 'DLASD7', -INFO )
                    347:          RETURN
                    348:       END IF
                    349: *
                    350:       NLP1 = NL + 1
                    351:       NLP2 = NL + 2
                    352:       IF( ICOMPQ.EQ.1 ) THEN
                    353:          GIVPTR = 0
                    354:       END IF
                    355: *
                    356: *     Generate the first part of the vector Z and move the singular
                    357: *     values in the first part of D one position backward.
                    358: *
                    359:       Z1 = ALPHA*VL( NLP1 )
                    360:       VL( NLP1 ) = ZERO
                    361:       TAU = VF( NLP1 )
                    362:       DO 10 I = NL, 1, -1
                    363:          Z( I+1 ) = ALPHA*VL( I )
                    364:          VL( I ) = ZERO
                    365:          VF( I+1 ) = VF( I )
                    366:          D( I+1 ) = D( I )
                    367:          IDXQ( I+1 ) = IDXQ( I ) + 1
                    368:    10 CONTINUE
                    369:       VF( 1 ) = TAU
                    370: *
                    371: *     Generate the second part of the vector Z.
                    372: *
                    373:       DO 20 I = NLP2, M
                    374:          Z( I ) = BETA*VF( I )
                    375:          VF( I ) = ZERO
                    376:    20 CONTINUE
                    377: *
                    378: *     Sort the singular values into increasing order
                    379: *
                    380:       DO 30 I = NLP2, N
                    381:          IDXQ( I ) = IDXQ( I ) + NLP1
                    382:    30 CONTINUE
                    383: *
                    384: *     DSIGMA, IDXC, IDXC, and ZW are used as storage space.
                    385: *
                    386:       DO 40 I = 2, N
                    387:          DSIGMA( I ) = D( IDXQ( I ) )
                    388:          ZW( I ) = Z( IDXQ( I ) )
                    389:          VFW( I ) = VF( IDXQ( I ) )
                    390:          VLW( I ) = VL( IDXQ( I ) )
                    391:    40 CONTINUE
                    392: *
                    393:       CALL DLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
                    394: *
                    395:       DO 50 I = 2, N
                    396:          IDXI = 1 + IDX( I )
                    397:          D( I ) = DSIGMA( IDXI )
                    398:          Z( I ) = ZW( IDXI )
                    399:          VF( I ) = VFW( IDXI )
                    400:          VL( I ) = VLW( IDXI )
                    401:    50 CONTINUE
                    402: *
                    403: *     Calculate the allowable deflation tolerence
                    404: *
                    405:       EPS = DLAMCH( 'Epsilon' )
                    406:       TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
                    407:       TOL = EIGHT*EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
                    408: *
                    409: *     There are 2 kinds of deflation -- first a value in the z-vector
                    410: *     is small, second two (or more) singular values are very close
                    411: *     together (their difference is small).
                    412: *
                    413: *     If the value in the z-vector is small, we simply permute the
                    414: *     array so that the corresponding singular value is moved to the
                    415: *     end.
                    416: *
                    417: *     If two values in the D-vector are close, we perform a two-sided
                    418: *     rotation designed to make one of the corresponding z-vector
                    419: *     entries zero, and then permute the array so that the deflated
                    420: *     singular value is moved to the end.
                    421: *
                    422: *     If there are multiple singular values then the problem deflates.
                    423: *     Here the number of equal singular values are found.  As each equal
                    424: *     singular value is found, an elementary reflector is computed to
                    425: *     rotate the corresponding singular subspace so that the
                    426: *     corresponding components of Z are zero in this new basis.
                    427: *
                    428:       K = 1
                    429:       K2 = N + 1
                    430:       DO 60 J = 2, N
                    431:          IF( ABS( Z( J ) ).LE.TOL ) THEN
                    432: *
                    433: *           Deflate due to small z component.
                    434: *
                    435:             K2 = K2 - 1
                    436:             IDXP( K2 ) = J
                    437:             IF( J.EQ.N )
                    438:      $         GO TO 100
                    439:          ELSE
                    440:             JPREV = J
                    441:             GO TO 70
                    442:          END IF
                    443:    60 CONTINUE
                    444:    70 CONTINUE
                    445:       J = JPREV
                    446:    80 CONTINUE
                    447:       J = J + 1
                    448:       IF( J.GT.N )
                    449:      $   GO TO 90
                    450:       IF( ABS( Z( J ) ).LE.TOL ) THEN
                    451: *
                    452: *        Deflate due to small z component.
                    453: *
                    454:          K2 = K2 - 1
                    455:          IDXP( K2 ) = J
                    456:       ELSE
                    457: *
                    458: *        Check if singular values are close enough to allow deflation.
                    459: *
                    460:          IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
                    461: *
                    462: *           Deflation is possible.
                    463: *
                    464:             S = Z( JPREV )
                    465:             C = Z( J )
                    466: *
                    467: *           Find sqrt(a**2+b**2) without overflow or
                    468: *           destructive underflow.
                    469: *
                    470:             TAU = DLAPY2( C, S )
                    471:             Z( J ) = TAU
                    472:             Z( JPREV ) = ZERO
                    473:             C = C / TAU
                    474:             S = -S / TAU
                    475: *
                    476: *           Record the appropriate Givens rotation
                    477: *
                    478:             IF( ICOMPQ.EQ.1 ) THEN
                    479:                GIVPTR = GIVPTR + 1
                    480:                IDXJP = IDXQ( IDX( JPREV )+1 )
                    481:                IDXJ = IDXQ( IDX( J )+1 )
                    482:                IF( IDXJP.LE.NLP1 ) THEN
                    483:                   IDXJP = IDXJP - 1
                    484:                END IF
                    485:                IF( IDXJ.LE.NLP1 ) THEN
                    486:                   IDXJ = IDXJ - 1
                    487:                END IF
                    488:                GIVCOL( GIVPTR, 2 ) = IDXJP
                    489:                GIVCOL( GIVPTR, 1 ) = IDXJ
                    490:                GIVNUM( GIVPTR, 2 ) = C
                    491:                GIVNUM( GIVPTR, 1 ) = S
                    492:             END IF
                    493:             CALL DROT( 1, VF( JPREV ), 1, VF( J ), 1, C, S )
                    494:             CALL DROT( 1, VL( JPREV ), 1, VL( J ), 1, C, S )
                    495:             K2 = K2 - 1
                    496:             IDXP( K2 ) = JPREV
                    497:             JPREV = J
                    498:          ELSE
                    499:             K = K + 1
                    500:             ZW( K ) = Z( JPREV )
                    501:             DSIGMA( K ) = D( JPREV )
                    502:             IDXP( K ) = JPREV
                    503:             JPREV = J
                    504:          END IF
                    505:       END IF
                    506:       GO TO 80
                    507:    90 CONTINUE
                    508: *
                    509: *     Record the last singular value.
                    510: *
                    511:       K = K + 1
                    512:       ZW( K ) = Z( JPREV )
                    513:       DSIGMA( K ) = D( JPREV )
                    514:       IDXP( K ) = JPREV
                    515: *
                    516:   100 CONTINUE
                    517: *
                    518: *     Sort the singular values into DSIGMA. The singular values which
                    519: *     were not deflated go into the first K slots of DSIGMA, except
                    520: *     that DSIGMA(1) is treated separately.
                    521: *
                    522:       DO 110 J = 2, N
                    523:          JP = IDXP( J )
                    524:          DSIGMA( J ) = D( JP )
                    525:          VFW( J ) = VF( JP )
                    526:          VLW( J ) = VL( JP )
                    527:   110 CONTINUE
                    528:       IF( ICOMPQ.EQ.1 ) THEN
                    529:          DO 120 J = 2, N
                    530:             JP = IDXP( J )
                    531:             PERM( J ) = IDXQ( IDX( JP )+1 )
                    532:             IF( PERM( J ).LE.NLP1 ) THEN
                    533:                PERM( J ) = PERM( J ) - 1
                    534:             END IF
                    535:   120    CONTINUE
                    536:       END IF
                    537: *
                    538: *     The deflated singular values go back into the last N - K slots of
                    539: *     D.
                    540: *
                    541:       CALL DCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
                    542: *
                    543: *     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and
                    544: *     VL(M).
                    545: *
                    546:       DSIGMA( 1 ) = ZERO
                    547:       HLFTOL = TOL / TWO
                    548:       IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
                    549:      $   DSIGMA( 2 ) = HLFTOL
                    550:       IF( M.GT.N ) THEN
                    551:          Z( 1 ) = DLAPY2( Z1, Z( M ) )
                    552:          IF( Z( 1 ).LE.TOL ) THEN
                    553:             C = ONE
                    554:             S = ZERO
                    555:             Z( 1 ) = TOL
                    556:          ELSE
                    557:             C = Z1 / Z( 1 )
                    558:             S = -Z( M ) / Z( 1 )
                    559:          END IF
                    560:          CALL DROT( 1, VF( M ), 1, VF( 1 ), 1, C, S )
                    561:          CALL DROT( 1, VL( M ), 1, VL( 1 ), 1, C, S )
                    562:       ELSE
                    563:          IF( ABS( Z1 ).LE.TOL ) THEN
                    564:             Z( 1 ) = TOL
                    565:          ELSE
                    566:             Z( 1 ) = Z1
                    567:          END IF
                    568:       END IF
                    569: *
                    570: *     Restore Z, VF, and VL.
                    571: *
                    572:       CALL DCOPY( K-1, ZW( 2 ), 1, Z( 2 ), 1 )
                    573:       CALL DCOPY( N-1, VFW( 2 ), 1, VF( 2 ), 1 )
                    574:       CALL DCOPY( N-1, VLW( 2 ), 1, VL( 2 ), 1 )
                    575: *
                    576:       RETURN
                    577: *
                    578: *     End of DLASD7
                    579: *
                    580:       END

CVSweb interface <joel.bertrand@systella.fr>