Annotation of rpl/lapack/lapack/dlasd7.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
        !             2:      $                   VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
        !             3:      $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
        !             4:      $                   C, S, INFO )
        !             5: *
        !             6: *  -- LAPACK auxiliary routine (version 3.2) --
        !             7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             9: *     November 2006
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
        !            13:      $                   NR, SQRE
        !            14:       DOUBLE PRECISION   ALPHA, BETA, C, S
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       INTEGER            GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
        !            18:      $                   IDXQ( * ), PERM( * )
        !            19:       DOUBLE PRECISION   D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
        !            20:      $                   VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
        !            21:      $                   ZW( * )
        !            22: *     ..
        !            23: *
        !            24: *  Purpose
        !            25: *  =======
        !            26: *
        !            27: *  DLASD7 merges the two sets of singular values together into a single
        !            28: *  sorted set. Then it tries to deflate the size of the problem. There
        !            29: *  are two ways in which deflation can occur:  when two or more singular
        !            30: *  values are close together or if there is a tiny entry in the Z
        !            31: *  vector. For each such occurrence the order of the related
        !            32: *  secular equation problem is reduced by one.
        !            33: *
        !            34: *  DLASD7 is called from DLASD6.
        !            35: *
        !            36: *  Arguments
        !            37: *  =========
        !            38: *
        !            39: *  ICOMPQ  (input) INTEGER
        !            40: *          Specifies whether singular vectors are to be computed
        !            41: *          in compact form, as follows:
        !            42: *          = 0: Compute singular values only.
        !            43: *          = 1: Compute singular vectors of upper
        !            44: *               bidiagonal matrix in compact form.
        !            45: *
        !            46: *  NL     (input) INTEGER
        !            47: *         The row dimension of the upper block. NL >= 1.
        !            48: *
        !            49: *  NR     (input) INTEGER
        !            50: *         The row dimension of the lower block. NR >= 1.
        !            51: *
        !            52: *  SQRE   (input) INTEGER
        !            53: *         = 0: the lower block is an NR-by-NR square matrix.
        !            54: *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
        !            55: *
        !            56: *         The bidiagonal matrix has
        !            57: *         N = NL + NR + 1 rows and
        !            58: *         M = N + SQRE >= N columns.
        !            59: *
        !            60: *  K      (output) INTEGER
        !            61: *         Contains the dimension of the non-deflated matrix, this is
        !            62: *         the order of the related secular equation. 1 <= K <=N.
        !            63: *
        !            64: *  D      (input/output) DOUBLE PRECISION array, dimension ( N )
        !            65: *         On entry D contains the singular values of the two submatrices
        !            66: *         to be combined. On exit D contains the trailing (N-K) updated
        !            67: *         singular values (those which were deflated) sorted into
        !            68: *         increasing order.
        !            69: *
        !            70: *  Z      (output) DOUBLE PRECISION array, dimension ( M )
        !            71: *         On exit Z contains the updating row vector in the secular
        !            72: *         equation.
        !            73: *
        !            74: *  ZW     (workspace) DOUBLE PRECISION array, dimension ( M )
        !            75: *         Workspace for Z.
        !            76: *
        !            77: *  VF     (input/output) DOUBLE PRECISION array, dimension ( M )
        !            78: *         On entry, VF(1:NL+1) contains the first components of all
        !            79: *         right singular vectors of the upper block; and VF(NL+2:M)
        !            80: *         contains the first components of all right singular vectors
        !            81: *         of the lower block. On exit, VF contains the first components
        !            82: *         of all right singular vectors of the bidiagonal matrix.
        !            83: *
        !            84: *  VFW    (workspace) DOUBLE PRECISION array, dimension ( M )
        !            85: *         Workspace for VF.
        !            86: *
        !            87: *  VL     (input/output) DOUBLE PRECISION array, dimension ( M )
        !            88: *         On entry, VL(1:NL+1) contains the  last components of all
        !            89: *         right singular vectors of the upper block; and VL(NL+2:M)
        !            90: *         contains the last components of all right singular vectors
        !            91: *         of the lower block. On exit, VL contains the last components
        !            92: *         of all right singular vectors of the bidiagonal matrix.
        !            93: *
        !            94: *  VLW    (workspace) DOUBLE PRECISION array, dimension ( M )
        !            95: *         Workspace for VL.
        !            96: *
        !            97: *  ALPHA  (input) DOUBLE PRECISION
        !            98: *         Contains the diagonal element associated with the added row.
        !            99: *
        !           100: *  BETA   (input) DOUBLE PRECISION
        !           101: *         Contains the off-diagonal element associated with the added
        !           102: *         row.
        !           103: *
        !           104: *  DSIGMA (output) DOUBLE PRECISION array, dimension ( N )
        !           105: *         Contains a copy of the diagonal elements (K-1 singular values
        !           106: *         and one zero) in the secular equation.
        !           107: *
        !           108: *  IDX    (workspace) INTEGER array, dimension ( N )
        !           109: *         This will contain the permutation used to sort the contents of
        !           110: *         D into ascending order.
        !           111: *
        !           112: *  IDXP   (workspace) INTEGER array, dimension ( N )
        !           113: *         This will contain the permutation used to place deflated
        !           114: *         values of D at the end of the array. On output IDXP(2:K)
        !           115: *         points to the nondeflated D-values and IDXP(K+1:N)
        !           116: *         points to the deflated singular values.
        !           117: *
        !           118: *  IDXQ   (input) INTEGER array, dimension ( N )
        !           119: *         This contains the permutation which separately sorts the two
        !           120: *         sub-problems in D into ascending order.  Note that entries in
        !           121: *         the first half of this permutation must first be moved one
        !           122: *         position backward; and entries in the second half
        !           123: *         must first have NL+1 added to their values.
        !           124: *
        !           125: *  PERM   (output) INTEGER array, dimension ( N )
        !           126: *         The permutations (from deflation and sorting) to be applied
        !           127: *         to each singular block. Not referenced if ICOMPQ = 0.
        !           128: *
        !           129: *  GIVPTR (output) INTEGER
        !           130: *         The number of Givens rotations which took place in this
        !           131: *         subproblem. Not referenced if ICOMPQ = 0.
        !           132: *
        !           133: *  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
        !           134: *         Each pair of numbers indicates a pair of columns to take place
        !           135: *         in a Givens rotation. Not referenced if ICOMPQ = 0.
        !           136: *
        !           137: *  LDGCOL (input) INTEGER
        !           138: *         The leading dimension of GIVCOL, must be at least N.
        !           139: *
        !           140: *  GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
        !           141: *         Each number indicates the C or S value to be used in the
        !           142: *         corresponding Givens rotation. Not referenced if ICOMPQ = 0.
        !           143: *
        !           144: *  LDGNUM (input) INTEGER
        !           145: *         The leading dimension of GIVNUM, must be at least N.
        !           146: *
        !           147: *  C      (output) DOUBLE PRECISION
        !           148: *         C contains garbage if SQRE =0 and the C-value of a Givens
        !           149: *         rotation related to the right null space if SQRE = 1.
        !           150: *
        !           151: *  S      (output) DOUBLE PRECISION
        !           152: *         S contains garbage if SQRE =0 and the S-value of a Givens
        !           153: *         rotation related to the right null space if SQRE = 1.
        !           154: *
        !           155: *  INFO   (output) INTEGER
        !           156: *         = 0:  successful exit.
        !           157: *         < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           158: *
        !           159: *  Further Details
        !           160: *  ===============
        !           161: *
        !           162: *  Based on contributions by
        !           163: *     Ming Gu and Huan Ren, Computer Science Division, University of
        !           164: *     California at Berkeley, USA
        !           165: *
        !           166: *  =====================================================================
        !           167: *
        !           168: *     .. Parameters ..
        !           169:       DOUBLE PRECISION   ZERO, ONE, TWO, EIGHT
        !           170:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
        !           171:      $                   EIGHT = 8.0D+0 )
        !           172: *     ..
        !           173: *     .. Local Scalars ..
        !           174: *
        !           175:       INTEGER            I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M, N,
        !           176:      $                   NLP1, NLP2
        !           177:       DOUBLE PRECISION   EPS, HLFTOL, TAU, TOL, Z1
        !           178: *     ..
        !           179: *     .. External Subroutines ..
        !           180:       EXTERNAL           DCOPY, DLAMRG, DROT, XERBLA
        !           181: *     ..
        !           182: *     .. External Functions ..
        !           183:       DOUBLE PRECISION   DLAMCH, DLAPY2
        !           184:       EXTERNAL           DLAMCH, DLAPY2
        !           185: *     ..
        !           186: *     .. Intrinsic Functions ..
        !           187:       INTRINSIC          ABS, MAX
        !           188: *     ..
        !           189: *     .. Executable Statements ..
        !           190: *
        !           191: *     Test the input parameters.
        !           192: *
        !           193:       INFO = 0
        !           194:       N = NL + NR + 1
        !           195:       M = N + SQRE
        !           196: *
        !           197:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
        !           198:          INFO = -1
        !           199:       ELSE IF( NL.LT.1 ) THEN
        !           200:          INFO = -2
        !           201:       ELSE IF( NR.LT.1 ) THEN
        !           202:          INFO = -3
        !           203:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
        !           204:          INFO = -4
        !           205:       ELSE IF( LDGCOL.LT.N ) THEN
        !           206:          INFO = -22
        !           207:       ELSE IF( LDGNUM.LT.N ) THEN
        !           208:          INFO = -24
        !           209:       END IF
        !           210:       IF( INFO.NE.0 ) THEN
        !           211:          CALL XERBLA( 'DLASD7', -INFO )
        !           212:          RETURN
        !           213:       END IF
        !           214: *
        !           215:       NLP1 = NL + 1
        !           216:       NLP2 = NL + 2
        !           217:       IF( ICOMPQ.EQ.1 ) THEN
        !           218:          GIVPTR = 0
        !           219:       END IF
        !           220: *
        !           221: *     Generate the first part of the vector Z and move the singular
        !           222: *     values in the first part of D one position backward.
        !           223: *
        !           224:       Z1 = ALPHA*VL( NLP1 )
        !           225:       VL( NLP1 ) = ZERO
        !           226:       TAU = VF( NLP1 )
        !           227:       DO 10 I = NL, 1, -1
        !           228:          Z( I+1 ) = ALPHA*VL( I )
        !           229:          VL( I ) = ZERO
        !           230:          VF( I+1 ) = VF( I )
        !           231:          D( I+1 ) = D( I )
        !           232:          IDXQ( I+1 ) = IDXQ( I ) + 1
        !           233:    10 CONTINUE
        !           234:       VF( 1 ) = TAU
        !           235: *
        !           236: *     Generate the second part of the vector Z.
        !           237: *
        !           238:       DO 20 I = NLP2, M
        !           239:          Z( I ) = BETA*VF( I )
        !           240:          VF( I ) = ZERO
        !           241:    20 CONTINUE
        !           242: *
        !           243: *     Sort the singular values into increasing order
        !           244: *
        !           245:       DO 30 I = NLP2, N
        !           246:          IDXQ( I ) = IDXQ( I ) + NLP1
        !           247:    30 CONTINUE
        !           248: *
        !           249: *     DSIGMA, IDXC, IDXC, and ZW are used as storage space.
        !           250: *
        !           251:       DO 40 I = 2, N
        !           252:          DSIGMA( I ) = D( IDXQ( I ) )
        !           253:          ZW( I ) = Z( IDXQ( I ) )
        !           254:          VFW( I ) = VF( IDXQ( I ) )
        !           255:          VLW( I ) = VL( IDXQ( I ) )
        !           256:    40 CONTINUE
        !           257: *
        !           258:       CALL DLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
        !           259: *
        !           260:       DO 50 I = 2, N
        !           261:          IDXI = 1 + IDX( I )
        !           262:          D( I ) = DSIGMA( IDXI )
        !           263:          Z( I ) = ZW( IDXI )
        !           264:          VF( I ) = VFW( IDXI )
        !           265:          VL( I ) = VLW( IDXI )
        !           266:    50 CONTINUE
        !           267: *
        !           268: *     Calculate the allowable deflation tolerence
        !           269: *
        !           270:       EPS = DLAMCH( 'Epsilon' )
        !           271:       TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
        !           272:       TOL = EIGHT*EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
        !           273: *
        !           274: *     There are 2 kinds of deflation -- first a value in the z-vector
        !           275: *     is small, second two (or more) singular values are very close
        !           276: *     together (their difference is small).
        !           277: *
        !           278: *     If the value in the z-vector is small, we simply permute the
        !           279: *     array so that the corresponding singular value is moved to the
        !           280: *     end.
        !           281: *
        !           282: *     If two values in the D-vector are close, we perform a two-sided
        !           283: *     rotation designed to make one of the corresponding z-vector
        !           284: *     entries zero, and then permute the array so that the deflated
        !           285: *     singular value is moved to the end.
        !           286: *
        !           287: *     If there are multiple singular values then the problem deflates.
        !           288: *     Here the number of equal singular values are found.  As each equal
        !           289: *     singular value is found, an elementary reflector is computed to
        !           290: *     rotate the corresponding singular subspace so that the
        !           291: *     corresponding components of Z are zero in this new basis.
        !           292: *
        !           293:       K = 1
        !           294:       K2 = N + 1
        !           295:       DO 60 J = 2, N
        !           296:          IF( ABS( Z( J ) ).LE.TOL ) THEN
        !           297: *
        !           298: *           Deflate due to small z component.
        !           299: *
        !           300:             K2 = K2 - 1
        !           301:             IDXP( K2 ) = J
        !           302:             IF( J.EQ.N )
        !           303:      $         GO TO 100
        !           304:          ELSE
        !           305:             JPREV = J
        !           306:             GO TO 70
        !           307:          END IF
        !           308:    60 CONTINUE
        !           309:    70 CONTINUE
        !           310:       J = JPREV
        !           311:    80 CONTINUE
        !           312:       J = J + 1
        !           313:       IF( J.GT.N )
        !           314:      $   GO TO 90
        !           315:       IF( ABS( Z( J ) ).LE.TOL ) THEN
        !           316: *
        !           317: *        Deflate due to small z component.
        !           318: *
        !           319:          K2 = K2 - 1
        !           320:          IDXP( K2 ) = J
        !           321:       ELSE
        !           322: *
        !           323: *        Check if singular values are close enough to allow deflation.
        !           324: *
        !           325:          IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
        !           326: *
        !           327: *           Deflation is possible.
        !           328: *
        !           329:             S = Z( JPREV )
        !           330:             C = Z( J )
        !           331: *
        !           332: *           Find sqrt(a**2+b**2) without overflow or
        !           333: *           destructive underflow.
        !           334: *
        !           335:             TAU = DLAPY2( C, S )
        !           336:             Z( J ) = TAU
        !           337:             Z( JPREV ) = ZERO
        !           338:             C = C / TAU
        !           339:             S = -S / TAU
        !           340: *
        !           341: *           Record the appropriate Givens rotation
        !           342: *
        !           343:             IF( ICOMPQ.EQ.1 ) THEN
        !           344:                GIVPTR = GIVPTR + 1
        !           345:                IDXJP = IDXQ( IDX( JPREV )+1 )
        !           346:                IDXJ = IDXQ( IDX( J )+1 )
        !           347:                IF( IDXJP.LE.NLP1 ) THEN
        !           348:                   IDXJP = IDXJP - 1
        !           349:                END IF
        !           350:                IF( IDXJ.LE.NLP1 ) THEN
        !           351:                   IDXJ = IDXJ - 1
        !           352:                END IF
        !           353:                GIVCOL( GIVPTR, 2 ) = IDXJP
        !           354:                GIVCOL( GIVPTR, 1 ) = IDXJ
        !           355:                GIVNUM( GIVPTR, 2 ) = C
        !           356:                GIVNUM( GIVPTR, 1 ) = S
        !           357:             END IF
        !           358:             CALL DROT( 1, VF( JPREV ), 1, VF( J ), 1, C, S )
        !           359:             CALL DROT( 1, VL( JPREV ), 1, VL( J ), 1, C, S )
        !           360:             K2 = K2 - 1
        !           361:             IDXP( K2 ) = JPREV
        !           362:             JPREV = J
        !           363:          ELSE
        !           364:             K = K + 1
        !           365:             ZW( K ) = Z( JPREV )
        !           366:             DSIGMA( K ) = D( JPREV )
        !           367:             IDXP( K ) = JPREV
        !           368:             JPREV = J
        !           369:          END IF
        !           370:       END IF
        !           371:       GO TO 80
        !           372:    90 CONTINUE
        !           373: *
        !           374: *     Record the last singular value.
        !           375: *
        !           376:       K = K + 1
        !           377:       ZW( K ) = Z( JPREV )
        !           378:       DSIGMA( K ) = D( JPREV )
        !           379:       IDXP( K ) = JPREV
        !           380: *
        !           381:   100 CONTINUE
        !           382: *
        !           383: *     Sort the singular values into DSIGMA. The singular values which
        !           384: *     were not deflated go into the first K slots of DSIGMA, except
        !           385: *     that DSIGMA(1) is treated separately.
        !           386: *
        !           387:       DO 110 J = 2, N
        !           388:          JP = IDXP( J )
        !           389:          DSIGMA( J ) = D( JP )
        !           390:          VFW( J ) = VF( JP )
        !           391:          VLW( J ) = VL( JP )
        !           392:   110 CONTINUE
        !           393:       IF( ICOMPQ.EQ.1 ) THEN
        !           394:          DO 120 J = 2, N
        !           395:             JP = IDXP( J )
        !           396:             PERM( J ) = IDXQ( IDX( JP )+1 )
        !           397:             IF( PERM( J ).LE.NLP1 ) THEN
        !           398:                PERM( J ) = PERM( J ) - 1
        !           399:             END IF
        !           400:   120    CONTINUE
        !           401:       END IF
        !           402: *
        !           403: *     The deflated singular values go back into the last N - K slots of
        !           404: *     D.
        !           405: *
        !           406:       CALL DCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
        !           407: *
        !           408: *     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and
        !           409: *     VL(M).
        !           410: *
        !           411:       DSIGMA( 1 ) = ZERO
        !           412:       HLFTOL = TOL / TWO
        !           413:       IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
        !           414:      $   DSIGMA( 2 ) = HLFTOL
        !           415:       IF( M.GT.N ) THEN
        !           416:          Z( 1 ) = DLAPY2( Z1, Z( M ) )
        !           417:          IF( Z( 1 ).LE.TOL ) THEN
        !           418:             C = ONE
        !           419:             S = ZERO
        !           420:             Z( 1 ) = TOL
        !           421:          ELSE
        !           422:             C = Z1 / Z( 1 )
        !           423:             S = -Z( M ) / Z( 1 )
        !           424:          END IF
        !           425:          CALL DROT( 1, VF( M ), 1, VF( 1 ), 1, C, S )
        !           426:          CALL DROT( 1, VL( M ), 1, VL( 1 ), 1, C, S )
        !           427:       ELSE
        !           428:          IF( ABS( Z1 ).LE.TOL ) THEN
        !           429:             Z( 1 ) = TOL
        !           430:          ELSE
        !           431:             Z( 1 ) = Z1
        !           432:          END IF
        !           433:       END IF
        !           434: *
        !           435: *     Restore Z, VF, and VL.
        !           436: *
        !           437:       CALL DCOPY( K-1, ZW( 2 ), 1, Z( 2 ), 1 )
        !           438:       CALL DCOPY( N-1, VFW( 2 ), 1, VF( 2 ), 1 )
        !           439:       CALL DCOPY( N-1, VLW( 2 ), 1, VL( 2 ), 1 )
        !           440: *
        !           441:       RETURN
        !           442: *
        !           443: *     End of DLASD7
        !           444: *
        !           445:       END

CVSweb interface <joel.bertrand@systella.fr>