File:  [local] / rpl / lapack / lapack / dlasd6.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:33 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA,
    2:      $                   IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,
    3:      $                   LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK,
    4:      $                   IWORK, INFO )
    5: *
    6: *  -- LAPACK auxiliary routine (version 3.3.0) --
    7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    9: *     November 2010
   10: *
   11: *     .. Scalar Arguments ..
   12:       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
   13:      $                   NR, SQRE
   14:       DOUBLE PRECISION   ALPHA, BETA, C, S
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ),
   18:      $                   PERM( * )
   19:       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( * ),
   20:      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
   21:      $                   VF( * ), VL( * ), WORK( * ), Z( * )
   22: *     ..
   23: *
   24: *  Purpose
   25: *  =======
   26: *
   27: *  DLASD6 computes the SVD of an updated upper bidiagonal matrix B
   28: *  obtained by merging two smaller ones by appending a row. This
   29: *  routine is used only for the problem which requires all singular
   30: *  values and optionally singular vector matrices in factored form.
   31: *  B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
   32: *  A related subroutine, DLASD1, handles the case in which all singular
   33: *  values and singular vectors of the bidiagonal matrix are desired.
   34: *
   35: *  DLASD6 computes the SVD as follows:
   36: *
   37: *                ( D1(in)  0    0     0 )
   38: *    B = U(in) * (   Z1'   a   Z2'    b ) * VT(in)
   39: *                (   0     0   D2(in) 0 )
   40: *
   41: *      = U(out) * ( D(out) 0) * VT(out)
   42: *
   43: *  where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
   44: *  with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
   45: *  elsewhere; and the entry b is empty if SQRE = 0.
   46: *
   47: *  The singular values of B can be computed using D1, D2, the first
   48: *  components of all the right singular vectors of the lower block, and
   49: *  the last components of all the right singular vectors of the upper
   50: *  block. These components are stored and updated in VF and VL,
   51: *  respectively, in DLASD6. Hence U and VT are not explicitly
   52: *  referenced.
   53: *
   54: *  The singular values are stored in D. The algorithm consists of two
   55: *  stages:
   56: *
   57: *        The first stage consists of deflating the size of the problem
   58: *        when there are multiple singular values or if there is a zero
   59: *        in the Z vector. For each such occurence the dimension of the
   60: *        secular equation problem is reduced by one. This stage is
   61: *        performed by the routine DLASD7.
   62: *
   63: *        The second stage consists of calculating the updated
   64: *        singular values. This is done by finding the roots of the
   65: *        secular equation via the routine DLASD4 (as called by DLASD8).
   66: *        This routine also updates VF and VL and computes the distances
   67: *        between the updated singular values and the old singular
   68: *        values.
   69: *
   70: *  DLASD6 is called from DLASDA.
   71: *
   72: *  Arguments
   73: *  =========
   74: *
   75: *  ICOMPQ (input) INTEGER
   76: *         Specifies whether singular vectors are to be computed in
   77: *         factored form:
   78: *         = 0: Compute singular values only.
   79: *         = 1: Compute singular vectors in factored form as well.
   80: *
   81: *  NL     (input) INTEGER
   82: *         The row dimension of the upper block.  NL >= 1.
   83: *
   84: *  NR     (input) INTEGER
   85: *         The row dimension of the lower block.  NR >= 1.
   86: *
   87: *  SQRE   (input) INTEGER
   88: *         = 0: the lower block is an NR-by-NR square matrix.
   89: *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
   90: *
   91: *         The bidiagonal matrix has row dimension N = NL + NR + 1,
   92: *         and column dimension M = N + SQRE.
   93: *
   94: *  D      (input/output) DOUBLE PRECISION array, dimension ( NL+NR+1 ).
   95: *         On entry D(1:NL,1:NL) contains the singular values of the
   96: *         upper block, and D(NL+2:N) contains the singular values
   97: *         of the lower block. On exit D(1:N) contains the singular
   98: *         values of the modified matrix.
   99: *
  100: *  VF     (input/output) DOUBLE PRECISION array, dimension ( M )
  101: *         On entry, VF(1:NL+1) contains the first components of all
  102: *         right singular vectors of the upper block; and VF(NL+2:M)
  103: *         contains the first components of all right singular vectors
  104: *         of the lower block. On exit, VF contains the first components
  105: *         of all right singular vectors of the bidiagonal matrix.
  106: *
  107: *  VL     (input/output) DOUBLE PRECISION array, dimension ( M )
  108: *         On entry, VL(1:NL+1) contains the  last components of all
  109: *         right singular vectors of the upper block; and VL(NL+2:M)
  110: *         contains the last components of all right singular vectors of
  111: *         the lower block. On exit, VL contains the last components of
  112: *         all right singular vectors of the bidiagonal matrix.
  113: *
  114: *  ALPHA  (input/output) DOUBLE PRECISION
  115: *         Contains the diagonal element associated with the added row.
  116: *
  117: *  BETA   (input/output) DOUBLE PRECISION
  118: *         Contains the off-diagonal element associated with the added
  119: *         row.
  120: *
  121: *  IDXQ   (output) INTEGER array, dimension ( N )
  122: *         This contains the permutation which will reintegrate the
  123: *         subproblem just solved back into sorted order, i.e.
  124: *         D( IDXQ( I = 1, N ) ) will be in ascending order.
  125: *
  126: *  PERM   (output) INTEGER array, dimension ( N )
  127: *         The permutations (from deflation and sorting) to be applied
  128: *         to each block. Not referenced if ICOMPQ = 0.
  129: *
  130: *  GIVPTR (output) INTEGER
  131: *         The number of Givens rotations which took place in this
  132: *         subproblem. Not referenced if ICOMPQ = 0.
  133: *
  134: *  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
  135: *         Each pair of numbers indicates a pair of columns to take place
  136: *         in a Givens rotation. Not referenced if ICOMPQ = 0.
  137: *
  138: *  LDGCOL (input) INTEGER
  139: *         leading dimension of GIVCOL, must be at least N.
  140: *
  141: *  GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
  142: *         Each number indicates the C or S value to be used in the
  143: *         corresponding Givens rotation. Not referenced if ICOMPQ = 0.
  144: *
  145: *  LDGNUM (input) INTEGER
  146: *         The leading dimension of GIVNUM and POLES, must be at least N.
  147: *
  148: *  POLES  (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
  149: *         On exit, POLES(1,*) is an array containing the new singular
  150: *         values obtained from solving the secular equation, and
  151: *         POLES(2,*) is an array containing the poles in the secular
  152: *         equation. Not referenced if ICOMPQ = 0.
  153: *
  154: *  DIFL   (output) DOUBLE PRECISION array, dimension ( N )
  155: *         On exit, DIFL(I) is the distance between I-th updated
  156: *         (undeflated) singular value and the I-th (undeflated) old
  157: *         singular value.
  158: *
  159: *  DIFR   (output) DOUBLE PRECISION array,
  160: *                  dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and
  161: *                  dimension ( N ) if ICOMPQ = 0.
  162: *         On exit, DIFR(I, 1) is the distance between I-th updated
  163: *         (undeflated) singular value and the I+1-th (undeflated) old
  164: *         singular value.
  165: *
  166: *         If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
  167: *         normalizing factors for the right singular vector matrix.
  168: *
  169: *         See DLASD8 for details on DIFL and DIFR.
  170: *
  171: *  Z      (output) DOUBLE PRECISION array, dimension ( M )
  172: *         The first elements of this array contain the components
  173: *         of the deflation-adjusted updating row vector.
  174: *
  175: *  K      (output) INTEGER
  176: *         Contains the dimension of the non-deflated matrix,
  177: *         This is the order of the related secular equation. 1 <= K <=N.
  178: *
  179: *  C      (output) DOUBLE PRECISION
  180: *         C contains garbage if SQRE =0 and the C-value of a Givens
  181: *         rotation related to the right null space if SQRE = 1.
  182: *
  183: *  S      (output) DOUBLE PRECISION
  184: *         S contains garbage if SQRE =0 and the S-value of a Givens
  185: *         rotation related to the right null space if SQRE = 1.
  186: *
  187: *  WORK   (workspace) DOUBLE PRECISION array, dimension ( 4 * M )
  188: *
  189: *  IWORK  (workspace) INTEGER array, dimension ( 3 * N )
  190: *
  191: *  INFO   (output) INTEGER
  192: *          = 0:  successful exit.
  193: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  194: *          > 0:  if INFO = 1, a singular value did not converge
  195: *
  196: *  Further Details
  197: *  ===============
  198: *
  199: *  Based on contributions by
  200: *     Ming Gu and Huan Ren, Computer Science Division, University of
  201: *     California at Berkeley, USA
  202: *
  203: *  =====================================================================
  204: *
  205: *     .. Parameters ..
  206:       DOUBLE PRECISION   ONE, ZERO
  207:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  208: *     ..
  209: *     .. Local Scalars ..
  210:       INTEGER            I, IDX, IDXC, IDXP, ISIGMA, IVFW, IVLW, IW, M,
  211:      $                   N, N1, N2
  212:       DOUBLE PRECISION   ORGNRM
  213: *     ..
  214: *     .. External Subroutines ..
  215:       EXTERNAL           DCOPY, DLAMRG, DLASCL, DLASD7, DLASD8, XERBLA
  216: *     ..
  217: *     .. Intrinsic Functions ..
  218:       INTRINSIC          ABS, MAX
  219: *     ..
  220: *     .. Executable Statements ..
  221: *
  222: *     Test the input parameters.
  223: *
  224:       INFO = 0
  225:       N = NL + NR + 1
  226:       M = N + SQRE
  227: *
  228:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
  229:          INFO = -1
  230:       ELSE IF( NL.LT.1 ) THEN
  231:          INFO = -2
  232:       ELSE IF( NR.LT.1 ) THEN
  233:          INFO = -3
  234:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
  235:          INFO = -4
  236:       ELSE IF( LDGCOL.LT.N ) THEN
  237:          INFO = -14
  238:       ELSE IF( LDGNUM.LT.N ) THEN
  239:          INFO = -16
  240:       END IF
  241:       IF( INFO.NE.0 ) THEN
  242:          CALL XERBLA( 'DLASD6', -INFO )
  243:          RETURN
  244:       END IF
  245: *
  246: *     The following values are for bookkeeping purposes only.  They are
  247: *     integer pointers which indicate the portion of the workspace
  248: *     used by a particular array in DLASD7 and DLASD8.
  249: *
  250:       ISIGMA = 1
  251:       IW = ISIGMA + N
  252:       IVFW = IW + M
  253:       IVLW = IVFW + M
  254: *
  255:       IDX = 1
  256:       IDXC = IDX + N
  257:       IDXP = IDXC + N
  258: *
  259: *     Scale.
  260: *
  261:       ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
  262:       D( NL+1 ) = ZERO
  263:       DO 10 I = 1, N
  264:          IF( ABS( D( I ) ).GT.ORGNRM ) THEN
  265:             ORGNRM = ABS( D( I ) )
  266:          END IF
  267:    10 CONTINUE
  268:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
  269:       ALPHA = ALPHA / ORGNRM
  270:       BETA = BETA / ORGNRM
  271: *
  272: *     Sort and Deflate singular values.
  273: *
  274:       CALL DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, WORK( IW ), VF,
  275:      $             WORK( IVFW ), VL, WORK( IVLW ), ALPHA, BETA,
  276:      $             WORK( ISIGMA ), IWORK( IDX ), IWORK( IDXP ), IDXQ,
  277:      $             PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S,
  278:      $             INFO )
  279: *
  280: *     Solve Secular Equation, compute DIFL, DIFR, and update VF, VL.
  281: *
  282:       CALL DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDGNUM,
  283:      $             WORK( ISIGMA ), WORK( IW ), INFO )
  284: *
  285: *     Handle error returned
  286: *
  287:       IF( INFO.NE.0 ) THEN
  288:          CALL XERBLA( 'DLASD8', -INFO )
  289:          RETURN
  290:       END IF
  291: *
  292: *     Save the poles if ICOMPQ = 1.
  293: *
  294:       IF( ICOMPQ.EQ.1 ) THEN
  295:          CALL DCOPY( K, D, 1, POLES( 1, 1 ), 1 )
  296:          CALL DCOPY( K, WORK( ISIGMA ), 1, POLES( 1, 2 ), 1 )
  297:       END IF
  298: *
  299: *     Unscale.
  300: *
  301:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  302: *
  303: *     Prepare the IDXQ sorting permutation.
  304: *
  305:       N1 = K
  306:       N2 = N - K
  307:       CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )
  308: *
  309:       RETURN
  310: *
  311: *     End of DLASD6
  312: *
  313:       END

CVSweb interface <joel.bertrand@systella.fr>