File:  [local] / rpl / lapack / lapack / dlasd6.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:34:31 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_25, HEAD
Cohérence Lapack.

    1: *> \brief \b DLASD6 computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller ones by appending a row. Used by sbdsdc.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLASD6 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd6.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd6.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd6.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA,
   22: *                          IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,
   23: *                          LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK,
   24: *                          IWORK, INFO )
   25:    26: *       .. Scalar Arguments ..
   27: *       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
   28: *      $                   NR, SQRE
   29: *       DOUBLE PRECISION   ALPHA, BETA, C, S
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ),
   33: *      $                   PERM( * )
   34: *       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( * ),
   35: *      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
   36: *      $                   VF( * ), VL( * ), WORK( * ), Z( * )
   37: *       ..
   38: *  
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> DLASD6 computes the SVD of an updated upper bidiagonal matrix B
   46: *> obtained by merging two smaller ones by appending a row. This
   47: *> routine is used only for the problem which requires all singular
   48: *> values and optionally singular vector matrices in factored form.
   49: *> B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
   50: *> A related subroutine, DLASD1, handles the case in which all singular
   51: *> values and singular vectors of the bidiagonal matrix are desired.
   52: *>
   53: *> DLASD6 computes the SVD as follows:
   54: *>
   55: *>               ( D1(in)    0    0       0 )
   56: *>   B = U(in) * (   Z1**T   a   Z2**T    b ) * VT(in)
   57: *>               (   0       0   D2(in)   0 )
   58: *>
   59: *>     = U(out) * ( D(out) 0) * VT(out)
   60: *>
   61: *> where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M
   62: *> with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
   63: *> elsewhere; and the entry b is empty if SQRE = 0.
   64: *>
   65: *> The singular values of B can be computed using D1, D2, the first
   66: *> components of all the right singular vectors of the lower block, and
   67: *> the last components of all the right singular vectors of the upper
   68: *> block. These components are stored and updated in VF and VL,
   69: *> respectively, in DLASD6. Hence U and VT are not explicitly
   70: *> referenced.
   71: *>
   72: *> The singular values are stored in D. The algorithm consists of two
   73: *> stages:
   74: *>
   75: *>       The first stage consists of deflating the size of the problem
   76: *>       when there are multiple singular values or if there is a zero
   77: *>       in the Z vector. For each such occurrence the dimension of the
   78: *>       secular equation problem is reduced by one. This stage is
   79: *>       performed by the routine DLASD7.
   80: *>
   81: *>       The second stage consists of calculating the updated
   82: *>       singular values. This is done by finding the roots of the
   83: *>       secular equation via the routine DLASD4 (as called by DLASD8).
   84: *>       This routine also updates VF and VL and computes the distances
   85: *>       between the updated singular values and the old singular
   86: *>       values.
   87: *>
   88: *> DLASD6 is called from DLASDA.
   89: *> \endverbatim
   90: *
   91: *  Arguments:
   92: *  ==========
   93: *
   94: *> \param[in] ICOMPQ
   95: *> \verbatim
   96: *>          ICOMPQ is INTEGER
   97: *>         Specifies whether singular vectors are to be computed in
   98: *>         factored form:
   99: *>         = 0: Compute singular values only.
  100: *>         = 1: Compute singular vectors in factored form as well.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] NL
  104: *> \verbatim
  105: *>          NL is INTEGER
  106: *>         The row dimension of the upper block.  NL >= 1.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] NR
  110: *> \verbatim
  111: *>          NR is INTEGER
  112: *>         The row dimension of the lower block.  NR >= 1.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] SQRE
  116: *> \verbatim
  117: *>          SQRE is INTEGER
  118: *>         = 0: the lower block is an NR-by-NR square matrix.
  119: *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
  120: *>
  121: *>         The bidiagonal matrix has row dimension N = NL + NR + 1,
  122: *>         and column dimension M = N + SQRE.
  123: *> \endverbatim
  124: *>
  125: *> \param[in,out] D
  126: *> \verbatim
  127: *>          D is DOUBLE PRECISION array, dimension ( NL+NR+1 ).
  128: *>         On entry D(1:NL,1:NL) contains the singular values of the
  129: *>         upper block, and D(NL+2:N) contains the singular values
  130: *>         of the lower block. On exit D(1:N) contains the singular
  131: *>         values of the modified matrix.
  132: *> \endverbatim
  133: *>
  134: *> \param[in,out] VF
  135: *> \verbatim
  136: *>          VF is DOUBLE PRECISION array, dimension ( M )
  137: *>         On entry, VF(1:NL+1) contains the first components of all
  138: *>         right singular vectors of the upper block; and VF(NL+2:M)
  139: *>         contains the first components of all right singular vectors
  140: *>         of the lower block. On exit, VF contains the first components
  141: *>         of all right singular vectors of the bidiagonal matrix.
  142: *> \endverbatim
  143: *>
  144: *> \param[in,out] VL
  145: *> \verbatim
  146: *>          VL is DOUBLE PRECISION array, dimension ( M )
  147: *>         On entry, VL(1:NL+1) contains the  last components of all
  148: *>         right singular vectors of the upper block; and VL(NL+2:M)
  149: *>         contains the last components of all right singular vectors of
  150: *>         the lower block. On exit, VL contains the last components of
  151: *>         all right singular vectors of the bidiagonal matrix.
  152: *> \endverbatim
  153: *>
  154: *> \param[in,out] ALPHA
  155: *> \verbatim
  156: *>          ALPHA is DOUBLE PRECISION
  157: *>         Contains the diagonal element associated with the added row.
  158: *> \endverbatim
  159: *>
  160: *> \param[in,out] BETA
  161: *> \verbatim
  162: *>          BETA is DOUBLE PRECISION
  163: *>         Contains the off-diagonal element associated with the added
  164: *>         row.
  165: *> \endverbatim
  166: *>
  167: *> \param[in,out] IDXQ
  168: *> \verbatim
  169: *>          IDXQ is INTEGER array, dimension ( N )
  170: *>         This contains the permutation which will reintegrate the
  171: *>         subproblem just solved back into sorted order, i.e.
  172: *>         D( IDXQ( I = 1, N ) ) will be in ascending order.
  173: *> \endverbatim
  174: *>
  175: *> \param[out] PERM
  176: *> \verbatim
  177: *>          PERM is INTEGER array, dimension ( N )
  178: *>         The permutations (from deflation and sorting) to be applied
  179: *>         to each block. Not referenced if ICOMPQ = 0.
  180: *> \endverbatim
  181: *>
  182: *> \param[out] GIVPTR
  183: *> \verbatim
  184: *>          GIVPTR is INTEGER
  185: *>         The number of Givens rotations which took place in this
  186: *>         subproblem. Not referenced if ICOMPQ = 0.
  187: *> \endverbatim
  188: *>
  189: *> \param[out] GIVCOL
  190: *> \verbatim
  191: *>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
  192: *>         Each pair of numbers indicates a pair of columns to take place
  193: *>         in a Givens rotation. Not referenced if ICOMPQ = 0.
  194: *> \endverbatim
  195: *>
  196: *> \param[in] LDGCOL
  197: *> \verbatim
  198: *>          LDGCOL is INTEGER
  199: *>         leading dimension of GIVCOL, must be at least N.
  200: *> \endverbatim
  201: *>
  202: *> \param[out] GIVNUM
  203: *> \verbatim
  204: *>          GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
  205: *>         Each number indicates the C or S value to be used in the
  206: *>         corresponding Givens rotation. Not referenced if ICOMPQ = 0.
  207: *> \endverbatim
  208: *>
  209: *> \param[in] LDGNUM
  210: *> \verbatim
  211: *>          LDGNUM is INTEGER
  212: *>         The leading dimension of GIVNUM and POLES, must be at least N.
  213: *> \endverbatim
  214: *>
  215: *> \param[out] POLES
  216: *> \verbatim
  217: *>          POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
  218: *>         On exit, POLES(1,*) is an array containing the new singular
  219: *>         values obtained from solving the secular equation, and
  220: *>         POLES(2,*) is an array containing the poles in the secular
  221: *>         equation. Not referenced if ICOMPQ = 0.
  222: *> \endverbatim
  223: *>
  224: *> \param[out] DIFL
  225: *> \verbatim
  226: *>          DIFL is DOUBLE PRECISION array, dimension ( N )
  227: *>         On exit, DIFL(I) is the distance between I-th updated
  228: *>         (undeflated) singular value and the I-th (undeflated) old
  229: *>         singular value.
  230: *> \endverbatim
  231: *>
  232: *> \param[out] DIFR
  233: *> \verbatim
  234: *>          DIFR is DOUBLE PRECISION array,
  235: *>                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
  236: *>                   dimension ( K ) if ICOMPQ = 0.
  237: *>          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
  238: *>          defined and will not be referenced.
  239: *>
  240: *>          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
  241: *>          normalizing factors for the right singular vector matrix.
  242: *>
  243: *>         See DLASD8 for details on DIFL and DIFR.
  244: *> \endverbatim
  245: *>
  246: *> \param[out] Z
  247: *> \verbatim
  248: *>          Z is DOUBLE PRECISION array, dimension ( M )
  249: *>         The first elements of this array contain the components
  250: *>         of the deflation-adjusted updating row vector.
  251: *> \endverbatim
  252: *>
  253: *> \param[out] K
  254: *> \verbatim
  255: *>          K is INTEGER
  256: *>         Contains the dimension of the non-deflated matrix,
  257: *>         This is the order of the related secular equation. 1 <= K <=N.
  258: *> \endverbatim
  259: *>
  260: *> \param[out] C
  261: *> \verbatim
  262: *>          C is DOUBLE PRECISION
  263: *>         C contains garbage if SQRE =0 and the C-value of a Givens
  264: *>         rotation related to the right null space if SQRE = 1.
  265: *> \endverbatim
  266: *>
  267: *> \param[out] S
  268: *> \verbatim
  269: *>          S is DOUBLE PRECISION
  270: *>         S contains garbage if SQRE =0 and the S-value of a Givens
  271: *>         rotation related to the right null space if SQRE = 1.
  272: *> \endverbatim
  273: *>
  274: *> \param[out] WORK
  275: *> \verbatim
  276: *>          WORK is DOUBLE PRECISION array, dimension ( 4 * M )
  277: *> \endverbatim
  278: *>
  279: *> \param[out] IWORK
  280: *> \verbatim
  281: *>          IWORK is INTEGER array, dimension ( 3 * N )
  282: *> \endverbatim
  283: *>
  284: *> \param[out] INFO
  285: *> \verbatim
  286: *>          INFO is INTEGER
  287: *>          = 0:  successful exit.
  288: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  289: *>          > 0:  if INFO = 1, a singular value did not converge
  290: *> \endverbatim
  291: *
  292: *  Authors:
  293: *  ========
  294: *
  295: *> \author Univ. of Tennessee 
  296: *> \author Univ. of California Berkeley 
  297: *> \author Univ. of Colorado Denver 
  298: *> \author NAG Ltd. 
  299: *
  300: *> \date June 2016
  301: *
  302: *> \ingroup auxOTHERauxiliary
  303: *
  304: *> \par Contributors:
  305: *  ==================
  306: *>
  307: *>     Ming Gu and Huan Ren, Computer Science Division, University of
  308: *>     California at Berkeley, USA
  309: *>
  310: *  =====================================================================
  311:       SUBROUTINE DLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA,
  312:      $                   IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,
  313:      $                   LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK,
  314:      $                   IWORK, INFO )
  315: *
  316: *  -- LAPACK auxiliary routine (version 3.6.1) --
  317: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  318: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  319: *     June 2016
  320: *
  321: *     .. Scalar Arguments ..
  322:       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
  323:      $                   NR, SQRE
  324:       DOUBLE PRECISION   ALPHA, BETA, C, S
  325: *     ..
  326: *     .. Array Arguments ..
  327:       INTEGER            GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ),
  328:      $                   PERM( * )
  329:       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( * ),
  330:      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
  331:      $                   VF( * ), VL( * ), WORK( * ), Z( * )
  332: *     ..
  333: *
  334: *  =====================================================================
  335: *
  336: *     .. Parameters ..
  337:       DOUBLE PRECISION   ONE, ZERO
  338:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  339: *     ..
  340: *     .. Local Scalars ..
  341:       INTEGER            I, IDX, IDXC, IDXP, ISIGMA, IVFW, IVLW, IW, M,
  342:      $                   N, N1, N2
  343:       DOUBLE PRECISION   ORGNRM
  344: *     ..
  345: *     .. External Subroutines ..
  346:       EXTERNAL           DCOPY, DLAMRG, DLASCL, DLASD7, DLASD8, XERBLA
  347: *     ..
  348: *     .. Intrinsic Functions ..
  349:       INTRINSIC          ABS, MAX
  350: *     ..
  351: *     .. Executable Statements ..
  352: *
  353: *     Test the input parameters.
  354: *
  355:       INFO = 0
  356:       N = NL + NR + 1
  357:       M = N + SQRE
  358: *
  359:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
  360:          INFO = -1
  361:       ELSE IF( NL.LT.1 ) THEN
  362:          INFO = -2
  363:       ELSE IF( NR.LT.1 ) THEN
  364:          INFO = -3
  365:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
  366:          INFO = -4
  367:       ELSE IF( LDGCOL.LT.N ) THEN
  368:          INFO = -14
  369:       ELSE IF( LDGNUM.LT.N ) THEN
  370:          INFO = -16
  371:       END IF
  372:       IF( INFO.NE.0 ) THEN
  373:          CALL XERBLA( 'DLASD6', -INFO )
  374:          RETURN
  375:       END IF
  376: *
  377: *     The following values are for bookkeeping purposes only.  They are
  378: *     integer pointers which indicate the portion of the workspace
  379: *     used by a particular array in DLASD7 and DLASD8.
  380: *
  381:       ISIGMA = 1
  382:       IW = ISIGMA + N
  383:       IVFW = IW + M
  384:       IVLW = IVFW + M
  385: *
  386:       IDX = 1
  387:       IDXC = IDX + N
  388:       IDXP = IDXC + N
  389: *
  390: *     Scale.
  391: *
  392:       ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
  393:       D( NL+1 ) = ZERO
  394:       DO 10 I = 1, N
  395:          IF( ABS( D( I ) ).GT.ORGNRM ) THEN
  396:             ORGNRM = ABS( D( I ) )
  397:          END IF
  398:    10 CONTINUE
  399:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
  400:       ALPHA = ALPHA / ORGNRM
  401:       BETA = BETA / ORGNRM
  402: *
  403: *     Sort and Deflate singular values.
  404: *
  405:       CALL DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, WORK( IW ), VF,
  406:      $             WORK( IVFW ), VL, WORK( IVLW ), ALPHA, BETA,
  407:      $             WORK( ISIGMA ), IWORK( IDX ), IWORK( IDXP ), IDXQ,
  408:      $             PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S,
  409:      $             INFO )
  410: *
  411: *     Solve Secular Equation, compute DIFL, DIFR, and update VF, VL.
  412: *
  413:       CALL DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDGNUM,
  414:      $             WORK( ISIGMA ), WORK( IW ), INFO )
  415: *
  416: *     Report the possible convergence failure.
  417: *
  418:       IF( INFO.NE.0 ) THEN
  419:          RETURN
  420:       END IF
  421: *
  422: *     Save the poles if ICOMPQ = 1.
  423: *
  424:       IF( ICOMPQ.EQ.1 ) THEN
  425:          CALL DCOPY( K, D, 1, POLES( 1, 1 ), 1 )
  426:          CALL DCOPY( K, WORK( ISIGMA ), 1, POLES( 1, 2 ), 1 )
  427:       END IF
  428: *
  429: *     Unscale.
  430: *
  431:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  432: *
  433: *     Prepare the IDXQ sorting permutation.
  434: *
  435:       N1 = K
  436:       N2 = N - K
  437:       CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )
  438: *
  439:       RETURN
  440: *
  441: *     End of DLASD6
  442: *
  443:       END

CVSweb interface <joel.bertrand@systella.fr>