Annotation of rpl/lapack/lapack/dlasd6.f, revision 1.23

1.14      bertrand    1: *> \brief \b DLASD6 computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller ones by appending a row. Used by sbdsdc.
1.11      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.20      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.11      bertrand    7: *
                      8: *> \htmlonly
1.20      bertrand    9: *> Download DLASD6 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd6.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd6.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd6.f">
1.11      bertrand   15: *> [TXT]</a>
1.20      bertrand   16: *> \endhtmlonly
1.11      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA,
                     22: *                          IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,
                     23: *                          LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK,
                     24: *                          IWORK, INFO )
1.20      bertrand   25: *
1.11      bertrand   26: *       .. Scalar Arguments ..
                     27: *       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
                     28: *      $                   NR, SQRE
                     29: *       DOUBLE PRECISION   ALPHA, BETA, C, S
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       INTEGER            GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ),
                     33: *      $                   PERM( * )
                     34: *       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( * ),
                     35: *      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
                     36: *      $                   VF( * ), VL( * ), WORK( * ), Z( * )
                     37: *       ..
1.20      bertrand   38: *
1.11      bertrand   39: *
                     40: *> \par Purpose:
                     41: *  =============
                     42: *>
                     43: *> \verbatim
                     44: *>
                     45: *> DLASD6 computes the SVD of an updated upper bidiagonal matrix B
                     46: *> obtained by merging two smaller ones by appending a row. This
                     47: *> routine is used only for the problem which requires all singular
                     48: *> values and optionally singular vector matrices in factored form.
                     49: *> B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
                     50: *> A related subroutine, DLASD1, handles the case in which all singular
                     51: *> values and singular vectors of the bidiagonal matrix are desired.
                     52: *>
                     53: *> DLASD6 computes the SVD as follows:
                     54: *>
                     55: *>               ( D1(in)    0    0       0 )
                     56: *>   B = U(in) * (   Z1**T   a   Z2**T    b ) * VT(in)
                     57: *>               (   0       0   D2(in)   0 )
                     58: *>
                     59: *>     = U(out) * ( D(out) 0) * VT(out)
                     60: *>
                     61: *> where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M
                     62: *> with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
                     63: *> elsewhere; and the entry b is empty if SQRE = 0.
                     64: *>
                     65: *> The singular values of B can be computed using D1, D2, the first
                     66: *> components of all the right singular vectors of the lower block, and
                     67: *> the last components of all the right singular vectors of the upper
                     68: *> block. These components are stored and updated in VF and VL,
                     69: *> respectively, in DLASD6. Hence U and VT are not explicitly
                     70: *> referenced.
                     71: *>
                     72: *> The singular values are stored in D. The algorithm consists of two
                     73: *> stages:
                     74: *>
                     75: *>       The first stage consists of deflating the size of the problem
                     76: *>       when there are multiple singular values or if there is a zero
1.18      bertrand   77: *>       in the Z vector. For each such occurrence the dimension of the
1.11      bertrand   78: *>       secular equation problem is reduced by one. This stage is
                     79: *>       performed by the routine DLASD7.
                     80: *>
                     81: *>       The second stage consists of calculating the updated
                     82: *>       singular values. This is done by finding the roots of the
                     83: *>       secular equation via the routine DLASD4 (as called by DLASD8).
                     84: *>       This routine also updates VF and VL and computes the distances
                     85: *>       between the updated singular values and the old singular
                     86: *>       values.
                     87: *>
                     88: *> DLASD6 is called from DLASDA.
                     89: *> \endverbatim
                     90: *
                     91: *  Arguments:
                     92: *  ==========
                     93: *
                     94: *> \param[in] ICOMPQ
                     95: *> \verbatim
                     96: *>          ICOMPQ is INTEGER
                     97: *>         Specifies whether singular vectors are to be computed in
                     98: *>         factored form:
                     99: *>         = 0: Compute singular values only.
                    100: *>         = 1: Compute singular vectors in factored form as well.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] NL
                    104: *> \verbatim
                    105: *>          NL is INTEGER
                    106: *>         The row dimension of the upper block.  NL >= 1.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] NR
                    110: *> \verbatim
                    111: *>          NR is INTEGER
                    112: *>         The row dimension of the lower block.  NR >= 1.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] SQRE
                    116: *> \verbatim
                    117: *>          SQRE is INTEGER
                    118: *>         = 0: the lower block is an NR-by-NR square matrix.
                    119: *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
                    120: *>
                    121: *>         The bidiagonal matrix has row dimension N = NL + NR + 1,
                    122: *>         and column dimension M = N + SQRE.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in,out] D
                    126: *> \verbatim
                    127: *>          D is DOUBLE PRECISION array, dimension ( NL+NR+1 ).
                    128: *>         On entry D(1:NL,1:NL) contains the singular values of the
                    129: *>         upper block, and D(NL+2:N) contains the singular values
                    130: *>         of the lower block. On exit D(1:N) contains the singular
                    131: *>         values of the modified matrix.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in,out] VF
                    135: *> \verbatim
                    136: *>          VF is DOUBLE PRECISION array, dimension ( M )
                    137: *>         On entry, VF(1:NL+1) contains the first components of all
                    138: *>         right singular vectors of the upper block; and VF(NL+2:M)
                    139: *>         contains the first components of all right singular vectors
                    140: *>         of the lower block. On exit, VF contains the first components
                    141: *>         of all right singular vectors of the bidiagonal matrix.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[in,out] VL
                    145: *> \verbatim
                    146: *>          VL is DOUBLE PRECISION array, dimension ( M )
                    147: *>         On entry, VL(1:NL+1) contains the  last components of all
                    148: *>         right singular vectors of the upper block; and VL(NL+2:M)
                    149: *>         contains the last components of all right singular vectors of
                    150: *>         the lower block. On exit, VL contains the last components of
                    151: *>         all right singular vectors of the bidiagonal matrix.
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[in,out] ALPHA
                    155: *> \verbatim
                    156: *>          ALPHA is DOUBLE PRECISION
                    157: *>         Contains the diagonal element associated with the added row.
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[in,out] BETA
                    161: *> \verbatim
                    162: *>          BETA is DOUBLE PRECISION
                    163: *>         Contains the off-diagonal element associated with the added
                    164: *>         row.
                    165: *> \endverbatim
                    166: *>
1.17      bertrand  167: *> \param[in,out] IDXQ
1.11      bertrand  168: *> \verbatim
                    169: *>          IDXQ is INTEGER array, dimension ( N )
                    170: *>         This contains the permutation which will reintegrate the
                    171: *>         subproblem just solved back into sorted order, i.e.
                    172: *>         D( IDXQ( I = 1, N ) ) will be in ascending order.
                    173: *> \endverbatim
                    174: *>
                    175: *> \param[out] PERM
                    176: *> \verbatim
                    177: *>          PERM is INTEGER array, dimension ( N )
                    178: *>         The permutations (from deflation and sorting) to be applied
                    179: *>         to each block. Not referenced if ICOMPQ = 0.
                    180: *> \endverbatim
                    181: *>
                    182: *> \param[out] GIVPTR
                    183: *> \verbatim
                    184: *>          GIVPTR is INTEGER
                    185: *>         The number of Givens rotations which took place in this
                    186: *>         subproblem. Not referenced if ICOMPQ = 0.
                    187: *> \endverbatim
                    188: *>
                    189: *> \param[out] GIVCOL
                    190: *> \verbatim
                    191: *>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
                    192: *>         Each pair of numbers indicates a pair of columns to take place
                    193: *>         in a Givens rotation. Not referenced if ICOMPQ = 0.
                    194: *> \endverbatim
                    195: *>
                    196: *> \param[in] LDGCOL
                    197: *> \verbatim
                    198: *>          LDGCOL is INTEGER
                    199: *>         leading dimension of GIVCOL, must be at least N.
                    200: *> \endverbatim
                    201: *>
                    202: *> \param[out] GIVNUM
                    203: *> \verbatim
                    204: *>          GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
                    205: *>         Each number indicates the C or S value to be used in the
                    206: *>         corresponding Givens rotation. Not referenced if ICOMPQ = 0.
                    207: *> \endverbatim
                    208: *>
                    209: *> \param[in] LDGNUM
                    210: *> \verbatim
                    211: *>          LDGNUM is INTEGER
                    212: *>         The leading dimension of GIVNUM and POLES, must be at least N.
                    213: *> \endverbatim
                    214: *>
                    215: *> \param[out] POLES
                    216: *> \verbatim
                    217: *>          POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
                    218: *>         On exit, POLES(1,*) is an array containing the new singular
                    219: *>         values obtained from solving the secular equation, and
                    220: *>         POLES(2,*) is an array containing the poles in the secular
                    221: *>         equation. Not referenced if ICOMPQ = 0.
                    222: *> \endverbatim
                    223: *>
                    224: *> \param[out] DIFL
                    225: *> \verbatim
                    226: *>          DIFL is DOUBLE PRECISION array, dimension ( N )
                    227: *>         On exit, DIFL(I) is the distance between I-th updated
                    228: *>         (undeflated) singular value and the I-th (undeflated) old
                    229: *>         singular value.
                    230: *> \endverbatim
                    231: *>
                    232: *> \param[out] DIFR
                    233: *> \verbatim
                    234: *>          DIFR is DOUBLE PRECISION array,
1.18      bertrand  235: *>                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
                    236: *>                   dimension ( K ) if ICOMPQ = 0.
                    237: *>          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
                    238: *>          defined and will not be referenced.
1.11      bertrand  239: *>
1.18      bertrand  240: *>          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
                    241: *>          normalizing factors for the right singular vector matrix.
1.11      bertrand  242: *>
                    243: *>         See DLASD8 for details on DIFL and DIFR.
                    244: *> \endverbatim
                    245: *>
                    246: *> \param[out] Z
                    247: *> \verbatim
                    248: *>          Z is DOUBLE PRECISION array, dimension ( M )
                    249: *>         The first elements of this array contain the components
                    250: *>         of the deflation-adjusted updating row vector.
                    251: *> \endverbatim
                    252: *>
                    253: *> \param[out] K
                    254: *> \verbatim
                    255: *>          K is INTEGER
                    256: *>         Contains the dimension of the non-deflated matrix,
                    257: *>         This is the order of the related secular equation. 1 <= K <=N.
                    258: *> \endverbatim
                    259: *>
                    260: *> \param[out] C
                    261: *> \verbatim
                    262: *>          C is DOUBLE PRECISION
                    263: *>         C contains garbage if SQRE =0 and the C-value of a Givens
                    264: *>         rotation related to the right null space if SQRE = 1.
                    265: *> \endverbatim
                    266: *>
                    267: *> \param[out] S
                    268: *> \verbatim
                    269: *>          S is DOUBLE PRECISION
                    270: *>         S contains garbage if SQRE =0 and the S-value of a Givens
                    271: *>         rotation related to the right null space if SQRE = 1.
                    272: *> \endverbatim
                    273: *>
                    274: *> \param[out] WORK
                    275: *> \verbatim
                    276: *>          WORK is DOUBLE PRECISION array, dimension ( 4 * M )
                    277: *> \endverbatim
                    278: *>
                    279: *> \param[out] IWORK
                    280: *> \verbatim
                    281: *>          IWORK is INTEGER array, dimension ( 3 * N )
                    282: *> \endverbatim
                    283: *>
                    284: *> \param[out] INFO
                    285: *> \verbatim
                    286: *>          INFO is INTEGER
                    287: *>          = 0:  successful exit.
                    288: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    289: *>          > 0:  if INFO = 1, a singular value did not converge
                    290: *> \endverbatim
                    291: *
                    292: *  Authors:
                    293: *  ========
                    294: *
1.20      bertrand  295: *> \author Univ. of Tennessee
                    296: *> \author Univ. of California Berkeley
                    297: *> \author Univ. of Colorado Denver
                    298: *> \author NAG Ltd.
1.11      bertrand  299: *
1.20      bertrand  300: *> \ingroup OTHERauxiliary
1.11      bertrand  301: *
                    302: *> \par Contributors:
                    303: *  ==================
                    304: *>
                    305: *>     Ming Gu and Huan Ren, Computer Science Division, University of
                    306: *>     California at Berkeley, USA
                    307: *>
                    308: *  =====================================================================
1.1       bertrand  309:       SUBROUTINE DLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA,
                    310:      $                   IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,
                    311:      $                   LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK,
                    312:      $                   IWORK, INFO )
                    313: *
1.23    ! bertrand  314: *  -- LAPACK auxiliary routine --
1.1       bertrand  315: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    316: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    317: *
                    318: *     .. Scalar Arguments ..
                    319:       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
                    320:      $                   NR, SQRE
                    321:       DOUBLE PRECISION   ALPHA, BETA, C, S
                    322: *     ..
                    323: *     .. Array Arguments ..
                    324:       INTEGER            GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ),
                    325:      $                   PERM( * )
                    326:       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( * ),
                    327:      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
                    328:      $                   VF( * ), VL( * ), WORK( * ), Z( * )
                    329: *     ..
                    330: *
                    331: *  =====================================================================
                    332: *
                    333: *     .. Parameters ..
                    334:       DOUBLE PRECISION   ONE, ZERO
                    335:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    336: *     ..
                    337: *     .. Local Scalars ..
                    338:       INTEGER            I, IDX, IDXC, IDXP, ISIGMA, IVFW, IVLW, IW, M,
                    339:      $                   N, N1, N2
                    340:       DOUBLE PRECISION   ORGNRM
                    341: *     ..
                    342: *     .. External Subroutines ..
                    343:       EXTERNAL           DCOPY, DLAMRG, DLASCL, DLASD7, DLASD8, XERBLA
                    344: *     ..
                    345: *     .. Intrinsic Functions ..
                    346:       INTRINSIC          ABS, MAX
                    347: *     ..
                    348: *     .. Executable Statements ..
                    349: *
                    350: *     Test the input parameters.
                    351: *
                    352:       INFO = 0
                    353:       N = NL + NR + 1
                    354:       M = N + SQRE
                    355: *
                    356:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
                    357:          INFO = -1
                    358:       ELSE IF( NL.LT.1 ) THEN
                    359:          INFO = -2
                    360:       ELSE IF( NR.LT.1 ) THEN
                    361:          INFO = -3
                    362:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
                    363:          INFO = -4
                    364:       ELSE IF( LDGCOL.LT.N ) THEN
                    365:          INFO = -14
                    366:       ELSE IF( LDGNUM.LT.N ) THEN
                    367:          INFO = -16
                    368:       END IF
                    369:       IF( INFO.NE.0 ) THEN
                    370:          CALL XERBLA( 'DLASD6', -INFO )
                    371:          RETURN
                    372:       END IF
                    373: *
                    374: *     The following values are for bookkeeping purposes only.  They are
                    375: *     integer pointers which indicate the portion of the workspace
                    376: *     used by a particular array in DLASD7 and DLASD8.
                    377: *
                    378:       ISIGMA = 1
                    379:       IW = ISIGMA + N
                    380:       IVFW = IW + M
                    381:       IVLW = IVFW + M
                    382: *
                    383:       IDX = 1
                    384:       IDXC = IDX + N
                    385:       IDXP = IDXC + N
                    386: *
                    387: *     Scale.
                    388: *
                    389:       ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
                    390:       D( NL+1 ) = ZERO
                    391:       DO 10 I = 1, N
                    392:          IF( ABS( D( I ) ).GT.ORGNRM ) THEN
                    393:             ORGNRM = ABS( D( I ) )
                    394:          END IF
                    395:    10 CONTINUE
                    396:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
                    397:       ALPHA = ALPHA / ORGNRM
                    398:       BETA = BETA / ORGNRM
                    399: *
                    400: *     Sort and Deflate singular values.
                    401: *
                    402:       CALL DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, WORK( IW ), VF,
                    403:      $             WORK( IVFW ), VL, WORK( IVLW ), ALPHA, BETA,
                    404:      $             WORK( ISIGMA ), IWORK( IDX ), IWORK( IDXP ), IDXQ,
                    405:      $             PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S,
                    406:      $             INFO )
                    407: *
                    408: *     Solve Secular Equation, compute DIFL, DIFR, and update VF, VL.
                    409: *
                    410:       CALL DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDGNUM,
                    411:      $             WORK( ISIGMA ), WORK( IW ), INFO )
                    412: *
1.17      bertrand  413: *     Report the possible convergence failure.
1.8       bertrand  414: *
                    415:       IF( INFO.NE.0 ) THEN
                    416:          RETURN
                    417:       END IF
                    418: *
1.1       bertrand  419: *     Save the poles if ICOMPQ = 1.
                    420: *
                    421:       IF( ICOMPQ.EQ.1 ) THEN
                    422:          CALL DCOPY( K, D, 1, POLES( 1, 1 ), 1 )
                    423:          CALL DCOPY( K, WORK( ISIGMA ), 1, POLES( 1, 2 ), 1 )
                    424:       END IF
                    425: *
                    426: *     Unscale.
                    427: *
                    428:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
                    429: *
                    430: *     Prepare the IDXQ sorting permutation.
                    431: *
                    432:       N1 = K
                    433:       N2 = N - K
                    434:       CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )
                    435: *
                    436:       RETURN
                    437: *
                    438: *     End of DLASD6
                    439: *
                    440:       END

CVSweb interface <joel.bertrand@systella.fr>