Annotation of rpl/lapack/lapack/dlasd6.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA,
        !             2:      $                   IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM,
        !             3:      $                   LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK,
        !             4:      $                   IWORK, INFO )
        !             5: *
        !             6: *  -- LAPACK auxiliary routine (version 3.2) --
        !             7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             9: *     November 2006
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
        !            13:      $                   NR, SQRE
        !            14:       DOUBLE PRECISION   ALPHA, BETA, C, S
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       INTEGER            GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ),
        !            18:      $                   PERM( * )
        !            19:       DOUBLE PRECISION   D( * ), DIFL( * ), DIFR( * ),
        !            20:      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
        !            21:      $                   VF( * ), VL( * ), WORK( * ), Z( * )
        !            22: *     ..
        !            23: *
        !            24: *  Purpose
        !            25: *  =======
        !            26: *
        !            27: *  DLASD6 computes the SVD of an updated upper bidiagonal matrix B
        !            28: *  obtained by merging two smaller ones by appending a row. This
        !            29: *  routine is used only for the problem which requires all singular
        !            30: *  values and optionally singular vector matrices in factored form.
        !            31: *  B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE.
        !            32: *  A related subroutine, DLASD1, handles the case in which all singular
        !            33: *  values and singular vectors of the bidiagonal matrix are desired.
        !            34: *
        !            35: *  DLASD6 computes the SVD as follows:
        !            36: *
        !            37: *                ( D1(in)  0    0     0 )
        !            38: *    B = U(in) * (   Z1'   a   Z2'    b ) * VT(in)
        !            39: *                (   0     0   D2(in) 0 )
        !            40: *
        !            41: *      = U(out) * ( D(out) 0) * VT(out)
        !            42: *
        !            43: *  where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
        !            44: *  with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
        !            45: *  elsewhere; and the entry b is empty if SQRE = 0.
        !            46: *
        !            47: *  The singular values of B can be computed using D1, D2, the first
        !            48: *  components of all the right singular vectors of the lower block, and
        !            49: *  the last components of all the right singular vectors of the upper
        !            50: *  block. These components are stored and updated in VF and VL,
        !            51: *  respectively, in DLASD6. Hence U and VT are not explicitly
        !            52: *  referenced.
        !            53: *
        !            54: *  The singular values are stored in D. The algorithm consists of two
        !            55: *  stages:
        !            56: *
        !            57: *        The first stage consists of deflating the size of the problem
        !            58: *        when there are multiple singular values or if there is a zero
        !            59: *        in the Z vector. For each such occurence the dimension of the
        !            60: *        secular equation problem is reduced by one. This stage is
        !            61: *        performed by the routine DLASD7.
        !            62: *
        !            63: *        The second stage consists of calculating the updated
        !            64: *        singular values. This is done by finding the roots of the
        !            65: *        secular equation via the routine DLASD4 (as called by DLASD8).
        !            66: *        This routine also updates VF and VL and computes the distances
        !            67: *        between the updated singular values and the old singular
        !            68: *        values.
        !            69: *
        !            70: *  DLASD6 is called from DLASDA.
        !            71: *
        !            72: *  Arguments
        !            73: *  =========
        !            74: *
        !            75: *  ICOMPQ (input) INTEGER
        !            76: *         Specifies whether singular vectors are to be computed in
        !            77: *         factored form:
        !            78: *         = 0: Compute singular values only.
        !            79: *         = 1: Compute singular vectors in factored form as well.
        !            80: *
        !            81: *  NL     (input) INTEGER
        !            82: *         The row dimension of the upper block.  NL >= 1.
        !            83: *
        !            84: *  NR     (input) INTEGER
        !            85: *         The row dimension of the lower block.  NR >= 1.
        !            86: *
        !            87: *  SQRE   (input) INTEGER
        !            88: *         = 0: the lower block is an NR-by-NR square matrix.
        !            89: *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
        !            90: *
        !            91: *         The bidiagonal matrix has row dimension N = NL + NR + 1,
        !            92: *         and column dimension M = N + SQRE.
        !            93: *
        !            94: *  D      (input/output) DOUBLE PRECISION array, dimension ( NL+NR+1 ).
        !            95: *         On entry D(1:NL,1:NL) contains the singular values of the
        !            96: *         upper block, and D(NL+2:N) contains the singular values
        !            97: *         of the lower block. On exit D(1:N) contains the singular
        !            98: *         values of the modified matrix.
        !            99: *
        !           100: *  VF     (input/output) DOUBLE PRECISION array, dimension ( M )
        !           101: *         On entry, VF(1:NL+1) contains the first components of all
        !           102: *         right singular vectors of the upper block; and VF(NL+2:M)
        !           103: *         contains the first components of all right singular vectors
        !           104: *         of the lower block. On exit, VF contains the first components
        !           105: *         of all right singular vectors of the bidiagonal matrix.
        !           106: *
        !           107: *  VL     (input/output) DOUBLE PRECISION array, dimension ( M )
        !           108: *         On entry, VL(1:NL+1) contains the  last components of all
        !           109: *         right singular vectors of the upper block; and VL(NL+2:M)
        !           110: *         contains the last components of all right singular vectors of
        !           111: *         the lower block. On exit, VL contains the last components of
        !           112: *         all right singular vectors of the bidiagonal matrix.
        !           113: *
        !           114: *  ALPHA  (input/output) DOUBLE PRECISION
        !           115: *         Contains the diagonal element associated with the added row.
        !           116: *
        !           117: *  BETA   (input/output) DOUBLE PRECISION
        !           118: *         Contains the off-diagonal element associated with the added
        !           119: *         row.
        !           120: *
        !           121: *  IDXQ   (output) INTEGER array, dimension ( N )
        !           122: *         This contains the permutation which will reintegrate the
        !           123: *         subproblem just solved back into sorted order, i.e.
        !           124: *         D( IDXQ( I = 1, N ) ) will be in ascending order.
        !           125: *
        !           126: *  PERM   (output) INTEGER array, dimension ( N )
        !           127: *         The permutations (from deflation and sorting) to be applied
        !           128: *         to each block. Not referenced if ICOMPQ = 0.
        !           129: *
        !           130: *  GIVPTR (output) INTEGER
        !           131: *         The number of Givens rotations which took place in this
        !           132: *         subproblem. Not referenced if ICOMPQ = 0.
        !           133: *
        !           134: *  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )
        !           135: *         Each pair of numbers indicates a pair of columns to take place
        !           136: *         in a Givens rotation. Not referenced if ICOMPQ = 0.
        !           137: *
        !           138: *  LDGCOL (input) INTEGER
        !           139: *         leading dimension of GIVCOL, must be at least N.
        !           140: *
        !           141: *  GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
        !           142: *         Each number indicates the C or S value to be used in the
        !           143: *         corresponding Givens rotation. Not referenced if ICOMPQ = 0.
        !           144: *
        !           145: *  LDGNUM (input) INTEGER
        !           146: *         The leading dimension of GIVNUM and POLES, must be at least N.
        !           147: *
        !           148: *  POLES  (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
        !           149: *         On exit, POLES(1,*) is an array containing the new singular
        !           150: *         values obtained from solving the secular equation, and
        !           151: *         POLES(2,*) is an array containing the poles in the secular
        !           152: *         equation. Not referenced if ICOMPQ = 0.
        !           153: *
        !           154: *  DIFL   (output) DOUBLE PRECISION array, dimension ( N )
        !           155: *         On exit, DIFL(I) is the distance between I-th updated
        !           156: *         (undeflated) singular value and the I-th (undeflated) old
        !           157: *         singular value.
        !           158: *
        !           159: *  DIFR   (output) DOUBLE PRECISION array,
        !           160: *                  dimension ( LDGNUM, 2 ) if ICOMPQ = 1 and
        !           161: *                  dimension ( N ) if ICOMPQ = 0.
        !           162: *         On exit, DIFR(I, 1) is the distance between I-th updated
        !           163: *         (undeflated) singular value and the I+1-th (undeflated) old
        !           164: *         singular value.
        !           165: *
        !           166: *         If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
        !           167: *         normalizing factors for the right singular vector matrix.
        !           168: *
        !           169: *         See DLASD8 for details on DIFL and DIFR.
        !           170: *
        !           171: *  Z      (output) DOUBLE PRECISION array, dimension ( M )
        !           172: *         The first elements of this array contain the components
        !           173: *         of the deflation-adjusted updating row vector.
        !           174: *
        !           175: *  K      (output) INTEGER
        !           176: *         Contains the dimension of the non-deflated matrix,
        !           177: *         This is the order of the related secular equation. 1 <= K <=N.
        !           178: *
        !           179: *  C      (output) DOUBLE PRECISION
        !           180: *         C contains garbage if SQRE =0 and the C-value of a Givens
        !           181: *         rotation related to the right null space if SQRE = 1.
        !           182: *
        !           183: *  S      (output) DOUBLE PRECISION
        !           184: *         S contains garbage if SQRE =0 and the S-value of a Givens
        !           185: *         rotation related to the right null space if SQRE = 1.
        !           186: *
        !           187: *  WORK   (workspace) DOUBLE PRECISION array, dimension ( 4 * M )
        !           188: *
        !           189: *  IWORK  (workspace) INTEGER array, dimension ( 3 * N )
        !           190: *
        !           191: *  INFO   (output) INTEGER
        !           192: *          = 0:  successful exit.
        !           193: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           194: *          > 0:  if INFO = 1, an singular value did not converge
        !           195: *
        !           196: *  Further Details
        !           197: *  ===============
        !           198: *
        !           199: *  Based on contributions by
        !           200: *     Ming Gu and Huan Ren, Computer Science Division, University of
        !           201: *     California at Berkeley, USA
        !           202: *
        !           203: *  =====================================================================
        !           204: *
        !           205: *     .. Parameters ..
        !           206:       DOUBLE PRECISION   ONE, ZERO
        !           207:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
        !           208: *     ..
        !           209: *     .. Local Scalars ..
        !           210:       INTEGER            I, IDX, IDXC, IDXP, ISIGMA, IVFW, IVLW, IW, M,
        !           211:      $                   N, N1, N2
        !           212:       DOUBLE PRECISION   ORGNRM
        !           213: *     ..
        !           214: *     .. External Subroutines ..
        !           215:       EXTERNAL           DCOPY, DLAMRG, DLASCL, DLASD7, DLASD8, XERBLA
        !           216: *     ..
        !           217: *     .. Intrinsic Functions ..
        !           218:       INTRINSIC          ABS, MAX
        !           219: *     ..
        !           220: *     .. Executable Statements ..
        !           221: *
        !           222: *     Test the input parameters.
        !           223: *
        !           224:       INFO = 0
        !           225:       N = NL + NR + 1
        !           226:       M = N + SQRE
        !           227: *
        !           228:       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
        !           229:          INFO = -1
        !           230:       ELSE IF( NL.LT.1 ) THEN
        !           231:          INFO = -2
        !           232:       ELSE IF( NR.LT.1 ) THEN
        !           233:          INFO = -3
        !           234:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
        !           235:          INFO = -4
        !           236:       ELSE IF( LDGCOL.LT.N ) THEN
        !           237:          INFO = -14
        !           238:       ELSE IF( LDGNUM.LT.N ) THEN
        !           239:          INFO = -16
        !           240:       END IF
        !           241:       IF( INFO.NE.0 ) THEN
        !           242:          CALL XERBLA( 'DLASD6', -INFO )
        !           243:          RETURN
        !           244:       END IF
        !           245: *
        !           246: *     The following values are for bookkeeping purposes only.  They are
        !           247: *     integer pointers which indicate the portion of the workspace
        !           248: *     used by a particular array in DLASD7 and DLASD8.
        !           249: *
        !           250:       ISIGMA = 1
        !           251:       IW = ISIGMA + N
        !           252:       IVFW = IW + M
        !           253:       IVLW = IVFW + M
        !           254: *
        !           255:       IDX = 1
        !           256:       IDXC = IDX + N
        !           257:       IDXP = IDXC + N
        !           258: *
        !           259: *     Scale.
        !           260: *
        !           261:       ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
        !           262:       D( NL+1 ) = ZERO
        !           263:       DO 10 I = 1, N
        !           264:          IF( ABS( D( I ) ).GT.ORGNRM ) THEN
        !           265:             ORGNRM = ABS( D( I ) )
        !           266:          END IF
        !           267:    10 CONTINUE
        !           268:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
        !           269:       ALPHA = ALPHA / ORGNRM
        !           270:       BETA = BETA / ORGNRM
        !           271: *
        !           272: *     Sort and Deflate singular values.
        !           273: *
        !           274:       CALL DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, WORK( IW ), VF,
        !           275:      $             WORK( IVFW ), VL, WORK( IVLW ), ALPHA, BETA,
        !           276:      $             WORK( ISIGMA ), IWORK( IDX ), IWORK( IDXP ), IDXQ,
        !           277:      $             PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S,
        !           278:      $             INFO )
        !           279: *
        !           280: *     Solve Secular Equation, compute DIFL, DIFR, and update VF, VL.
        !           281: *
        !           282:       CALL DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDGNUM,
        !           283:      $             WORK( ISIGMA ), WORK( IW ), INFO )
        !           284: *
        !           285: *     Save the poles if ICOMPQ = 1.
        !           286: *
        !           287:       IF( ICOMPQ.EQ.1 ) THEN
        !           288:          CALL DCOPY( K, D, 1, POLES( 1, 1 ), 1 )
        !           289:          CALL DCOPY( K, WORK( ISIGMA ), 1, POLES( 1, 2 ), 1 )
        !           290:       END IF
        !           291: *
        !           292: *     Unscale.
        !           293: *
        !           294:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
        !           295: *
        !           296: *     Prepare the IDXQ sorting permutation.
        !           297: *
        !           298:       N1 = K
        !           299:       N2 = N - K
        !           300:       CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )
        !           301: *
        !           302:       RETURN
        !           303: *
        !           304: *     End of DLASD6
        !           305: *
        !           306:       END

CVSweb interface <joel.bertrand@systella.fr>