File:  [local] / rpl / lapack / lapack / dlasd5.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:42:58 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLASD5
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLASD5 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd5.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd5.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd5.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
   22:    23: *       .. Scalar Arguments ..
   24: *       INTEGER            I
   25: *       DOUBLE PRECISION   DSIGMA, RHO
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> This subroutine computes the square root of the I-th eigenvalue
   38: *> of a positive symmetric rank-one modification of a 2-by-2 diagonal
   39: *> matrix
   40: *>
   41: *>            diag( D ) * diag( D ) +  RHO * Z * transpose(Z) .
   42: *>
   43: *> The diagonal entries in the array D are assumed to satisfy
   44: *>
   45: *>            0 <= D(i) < D(j)  for  i < j .
   46: *>
   47: *> We also assume RHO > 0 and that the Euclidean norm of the vector
   48: *> Z is one.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] I
   55: *> \verbatim
   56: *>          I is INTEGER
   57: *>         The index of the eigenvalue to be computed.  I = 1 or I = 2.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] D
   61: *> \verbatim
   62: *>          D is DOUBLE PRECISION array, dimension ( 2 )
   63: *>         The original eigenvalues.  We assume 0 <= D(1) < D(2).
   64: *> \endverbatim
   65: *>
   66: *> \param[in] Z
   67: *> \verbatim
   68: *>          Z is DOUBLE PRECISION array, dimension ( 2 )
   69: *>         The components of the updating vector.
   70: *> \endverbatim
   71: *>
   72: *> \param[out] DELTA
   73: *> \verbatim
   74: *>          DELTA is DOUBLE PRECISION array, dimension ( 2 )
   75: *>         Contains (D(j) - sigma_I) in its  j-th component.
   76: *>         The vector DELTA contains the information necessary
   77: *>         to construct the eigenvectors.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] RHO
   81: *> \verbatim
   82: *>          RHO is DOUBLE PRECISION
   83: *>         The scalar in the symmetric updating formula.
   84: *> \endverbatim
   85: *>
   86: *> \param[out] DSIGMA
   87: *> \verbatim
   88: *>          DSIGMA is DOUBLE PRECISION
   89: *>         The computed sigma_I, the I-th updated eigenvalue.
   90: *> \endverbatim
   91: *>
   92: *> \param[out] WORK
   93: *> \verbatim
   94: *>          WORK is DOUBLE PRECISION array, dimension ( 2 )
   95: *>         WORK contains (D(j) + sigma_I) in its  j-th component.
   96: *> \endverbatim
   97: *
   98: *  Authors:
   99: *  ========
  100: *
  101: *> \author Univ. of Tennessee 
  102: *> \author Univ. of California Berkeley 
  103: *> \author Univ. of Colorado Denver 
  104: *> \author NAG Ltd. 
  105: *
  106: *> \date November 2011
  107: *
  108: *> \ingroup auxOTHERauxiliary
  109: *
  110: *> \par Contributors:
  111: *  ==================
  112: *>
  113: *>     Ren-Cang Li, Computer Science Division, University of California
  114: *>     at Berkeley, USA
  115: *>
  116: *  =====================================================================
  117:       SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
  118: *
  119: *  -- LAPACK auxiliary routine (version 3.4.0) --
  120: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  121: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  122: *     November 2011
  123: *
  124: *     .. Scalar Arguments ..
  125:       INTEGER            I
  126:       DOUBLE PRECISION   DSIGMA, RHO
  127: *     ..
  128: *     .. Array Arguments ..
  129:       DOUBLE PRECISION   D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
  130: *     ..
  131: *
  132: *  =====================================================================
  133: *
  134: *     .. Parameters ..
  135:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR
  136:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
  137:      $                   THREE = 3.0D+0, FOUR = 4.0D+0 )
  138: *     ..
  139: *     .. Local Scalars ..
  140:       DOUBLE PRECISION   B, C, DEL, DELSQ, TAU, W
  141: *     ..
  142: *     .. Intrinsic Functions ..
  143:       INTRINSIC          ABS, SQRT
  144: *     ..
  145: *     .. Executable Statements ..
  146: *
  147:       DEL = D( 2 ) - D( 1 )
  148:       DELSQ = DEL*( D( 2 )+D( 1 ) )
  149:       IF( I.EQ.1 ) THEN
  150:          W = ONE + FOUR*RHO*( Z( 2 )*Z( 2 ) / ( D( 1 )+THREE*D( 2 ) )-
  151:      $       Z( 1 )*Z( 1 ) / ( THREE*D( 1 )+D( 2 ) ) ) / DEL
  152:          IF( W.GT.ZERO ) THEN
  153:             B = DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
  154:             C = RHO*Z( 1 )*Z( 1 )*DELSQ
  155: *
  156: *           B > ZERO, always
  157: *
  158: *           The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
  159: *
  160:             TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
  161: *
  162: *           The following TAU is DSIGMA - D( 1 )
  163: *
  164:             TAU = TAU / ( D( 1 )+SQRT( D( 1 )*D( 1 )+TAU ) )
  165:             DSIGMA = D( 1 ) + TAU
  166:             DELTA( 1 ) = -TAU
  167:             DELTA( 2 ) = DEL - TAU
  168:             WORK( 1 ) = TWO*D( 1 ) + TAU
  169:             WORK( 2 ) = ( D( 1 )+TAU ) + D( 2 )
  170: *           DELTA( 1 ) = -Z( 1 ) / TAU
  171: *           DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
  172:          ELSE
  173:             B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
  174:             C = RHO*Z( 2 )*Z( 2 )*DELSQ
  175: *
  176: *           The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
  177: *
  178:             IF( B.GT.ZERO ) THEN
  179:                TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
  180:             ELSE
  181:                TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
  182:             END IF
  183: *
  184: *           The following TAU is DSIGMA - D( 2 )
  185: *
  186:             TAU = TAU / ( D( 2 )+SQRT( ABS( D( 2 )*D( 2 )+TAU ) ) )
  187:             DSIGMA = D( 2 ) + TAU
  188:             DELTA( 1 ) = -( DEL+TAU )
  189:             DELTA( 2 ) = -TAU
  190:             WORK( 1 ) = D( 1 ) + TAU + D( 2 )
  191:             WORK( 2 ) = TWO*D( 2 ) + TAU
  192: *           DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
  193: *           DELTA( 2 ) = -Z( 2 ) / TAU
  194:          END IF
  195: *        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
  196: *        DELTA( 1 ) = DELTA( 1 ) / TEMP
  197: *        DELTA( 2 ) = DELTA( 2 ) / TEMP
  198:       ELSE
  199: *
  200: *        Now I=2
  201: *
  202:          B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
  203:          C = RHO*Z( 2 )*Z( 2 )*DELSQ
  204: *
  205: *        The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
  206: *
  207:          IF( B.GT.ZERO ) THEN
  208:             TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
  209:          ELSE
  210:             TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
  211:          END IF
  212: *
  213: *        The following TAU is DSIGMA - D( 2 )
  214: *
  215:          TAU = TAU / ( D( 2 )+SQRT( D( 2 )*D( 2 )+TAU ) )
  216:          DSIGMA = D( 2 ) + TAU
  217:          DELTA( 1 ) = -( DEL+TAU )
  218:          DELTA( 2 ) = -TAU
  219:          WORK( 1 ) = D( 1 ) + TAU + D( 2 )
  220:          WORK( 2 ) = TWO*D( 2 ) + TAU
  221: *        DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
  222: *        DELTA( 2 ) = -Z( 2 ) / TAU
  223: *        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
  224: *        DELTA( 1 ) = DELTA( 1 ) / TEMP
  225: *        DELTA( 2 ) = DELTA( 2 ) / TEMP
  226:       END IF
  227:       RETURN
  228: *
  229: *     End of DLASD5
  230: *
  231:       END

CVSweb interface <joel.bertrand@systella.fr>