Annotation of rpl/lapack/lapack/dlasd5.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
                      2: *
                      3: *  -- LAPACK auxiliary routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            I
                     10:       DOUBLE PRECISION   DSIGMA, RHO
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
                     14: *     ..
                     15: *
                     16: *  Purpose
                     17: *  =======
                     18: *
                     19: *  This subroutine computes the square root of the I-th eigenvalue
                     20: *  of a positive symmetric rank-one modification of a 2-by-2 diagonal
                     21: *  matrix
                     22: *
                     23: *             diag( D ) * diag( D ) +  RHO *  Z * transpose(Z) .
                     24: *
                     25: *  The diagonal entries in the array D are assumed to satisfy
                     26: *
                     27: *             0 <= D(i) < D(j)  for  i < j .
                     28: *
                     29: *  We also assume RHO > 0 and that the Euclidean norm of the vector
                     30: *  Z is one.
                     31: *
                     32: *  Arguments
                     33: *  =========
                     34: *
                     35: *  I      (input) INTEGER
                     36: *         The index of the eigenvalue to be computed.  I = 1 or I = 2.
                     37: *
                     38: *  D      (input) DOUBLE PRECISION array, dimension ( 2 )
                     39: *         The original eigenvalues.  We assume 0 <= D(1) < D(2).
                     40: *
                     41: *  Z      (input) DOUBLE PRECISION array, dimension ( 2 )
                     42: *         The components of the updating vector.
                     43: *
                     44: *  DELTA  (output) DOUBLE PRECISION array, dimension ( 2 )
                     45: *         Contains (D(j) - sigma_I) in its  j-th component.
                     46: *         The vector DELTA contains the information necessary
                     47: *         to construct the eigenvectors.
                     48: *
                     49: *  RHO    (input) DOUBLE PRECISION
                     50: *         The scalar in the symmetric updating formula.
                     51: *
                     52: *  DSIGMA (output) DOUBLE PRECISION
                     53: *         The computed sigma_I, the I-th updated eigenvalue.
                     54: *
                     55: *  WORK   (workspace) DOUBLE PRECISION array, dimension ( 2 )
                     56: *         WORK contains (D(j) + sigma_I) in its  j-th component.
                     57: *
                     58: *  Further Details
                     59: *  ===============
                     60: *
                     61: *  Based on contributions by
                     62: *     Ren-Cang Li, Computer Science Division, University of California
                     63: *     at Berkeley, USA
                     64: *
                     65: *  =====================================================================
                     66: *
                     67: *     .. Parameters ..
                     68:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR
                     69:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
                     70:      $                   THREE = 3.0D+0, FOUR = 4.0D+0 )
                     71: *     ..
                     72: *     .. Local Scalars ..
                     73:       DOUBLE PRECISION   B, C, DEL, DELSQ, TAU, W
                     74: *     ..
                     75: *     .. Intrinsic Functions ..
                     76:       INTRINSIC          ABS, SQRT
                     77: *     ..
                     78: *     .. Executable Statements ..
                     79: *
                     80:       DEL = D( 2 ) - D( 1 )
                     81:       DELSQ = DEL*( D( 2 )+D( 1 ) )
                     82:       IF( I.EQ.1 ) THEN
                     83:          W = ONE + FOUR*RHO*( Z( 2 )*Z( 2 ) / ( D( 1 )+THREE*D( 2 ) )-
                     84:      $       Z( 1 )*Z( 1 ) / ( THREE*D( 1 )+D( 2 ) ) ) / DEL
                     85:          IF( W.GT.ZERO ) THEN
                     86:             B = DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
                     87:             C = RHO*Z( 1 )*Z( 1 )*DELSQ
                     88: *
                     89: *           B > ZERO, always
                     90: *
                     91: *           The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
                     92: *
                     93:             TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
                     94: *
                     95: *           The following TAU is DSIGMA - D( 1 )
                     96: *
                     97:             TAU = TAU / ( D( 1 )+SQRT( D( 1 )*D( 1 )+TAU ) )
                     98:             DSIGMA = D( 1 ) + TAU
                     99:             DELTA( 1 ) = -TAU
                    100:             DELTA( 2 ) = DEL - TAU
                    101:             WORK( 1 ) = TWO*D( 1 ) + TAU
                    102:             WORK( 2 ) = ( D( 1 )+TAU ) + D( 2 )
                    103: *           DELTA( 1 ) = -Z( 1 ) / TAU
                    104: *           DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
                    105:          ELSE
                    106:             B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
                    107:             C = RHO*Z( 2 )*Z( 2 )*DELSQ
                    108: *
                    109: *           The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
                    110: *
                    111:             IF( B.GT.ZERO ) THEN
                    112:                TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
                    113:             ELSE
                    114:                TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
                    115:             END IF
                    116: *
                    117: *           The following TAU is DSIGMA - D( 2 )
                    118: *
                    119:             TAU = TAU / ( D( 2 )+SQRT( ABS( D( 2 )*D( 2 )+TAU ) ) )
                    120:             DSIGMA = D( 2 ) + TAU
                    121:             DELTA( 1 ) = -( DEL+TAU )
                    122:             DELTA( 2 ) = -TAU
                    123:             WORK( 1 ) = D( 1 ) + TAU + D( 2 )
                    124:             WORK( 2 ) = TWO*D( 2 ) + TAU
                    125: *           DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
                    126: *           DELTA( 2 ) = -Z( 2 ) / TAU
                    127:          END IF
                    128: *        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
                    129: *        DELTA( 1 ) = DELTA( 1 ) / TEMP
                    130: *        DELTA( 2 ) = DELTA( 2 ) / TEMP
                    131:       ELSE
                    132: *
                    133: *        Now I=2
                    134: *
                    135:          B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
                    136:          C = RHO*Z( 2 )*Z( 2 )*DELSQ
                    137: *
                    138: *        The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
                    139: *
                    140:          IF( B.GT.ZERO ) THEN
                    141:             TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
                    142:          ELSE
                    143:             TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
                    144:          END IF
                    145: *
                    146: *        The following TAU is DSIGMA - D( 2 )
                    147: *
                    148:          TAU = TAU / ( D( 2 )+SQRT( D( 2 )*D( 2 )+TAU ) )
                    149:          DSIGMA = D( 2 ) + TAU
                    150:          DELTA( 1 ) = -( DEL+TAU )
                    151:          DELTA( 2 ) = -TAU
                    152:          WORK( 1 ) = D( 1 ) + TAU + D( 2 )
                    153:          WORK( 2 ) = TWO*D( 2 ) + TAU
                    154: *        DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
                    155: *        DELTA( 2 ) = -Z( 2 ) / TAU
                    156: *        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
                    157: *        DELTA( 1 ) = DELTA( 1 ) / TEMP
                    158: *        DELTA( 2 ) = DELTA( 2 ) / TEMP
                    159:       END IF
                    160:       RETURN
                    161: *
                    162: *     End of DLASD5
                    163: *
                    164:       END

CVSweb interface <joel.bertrand@systella.fr>