Annotation of rpl/lapack/lapack/dlasd5.f, revision 1.18

1.11      bertrand    1: *> \brief \b DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DLASD5 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd5.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd5.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd5.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
1.15      bertrand   22: *
1.8       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            I
                     25: *       DOUBLE PRECISION   DSIGMA, RHO
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
                     29: *       ..
1.15      bertrand   30: *
1.8       bertrand   31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> This subroutine computes the square root of the I-th eigenvalue
                     38: *> of a positive symmetric rank-one modification of a 2-by-2 diagonal
                     39: *> matrix
                     40: *>
                     41: *>            diag( D ) * diag( D ) +  RHO * Z * transpose(Z) .
                     42: *>
                     43: *> The diagonal entries in the array D are assumed to satisfy
                     44: *>
                     45: *>            0 <= D(i) < D(j)  for  i < j .
                     46: *>
                     47: *> We also assume RHO > 0 and that the Euclidean norm of the vector
                     48: *> Z is one.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] I
                     55: *> \verbatim
                     56: *>          I is INTEGER
                     57: *>         The index of the eigenvalue to be computed.  I = 1 or I = 2.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] D
                     61: *> \verbatim
                     62: *>          D is DOUBLE PRECISION array, dimension ( 2 )
                     63: *>         The original eigenvalues.  We assume 0 <= D(1) < D(2).
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] Z
                     67: *> \verbatim
                     68: *>          Z is DOUBLE PRECISION array, dimension ( 2 )
                     69: *>         The components of the updating vector.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[out] DELTA
                     73: *> \verbatim
                     74: *>          DELTA is DOUBLE PRECISION array, dimension ( 2 )
                     75: *>         Contains (D(j) - sigma_I) in its  j-th component.
                     76: *>         The vector DELTA contains the information necessary
                     77: *>         to construct the eigenvectors.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] RHO
                     81: *> \verbatim
                     82: *>          RHO is DOUBLE PRECISION
                     83: *>         The scalar in the symmetric updating formula.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[out] DSIGMA
                     87: *> \verbatim
                     88: *>          DSIGMA is DOUBLE PRECISION
                     89: *>         The computed sigma_I, the I-th updated eigenvalue.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[out] WORK
                     93: *> \verbatim
                     94: *>          WORK is DOUBLE PRECISION array, dimension ( 2 )
                     95: *>         WORK contains (D(j) + sigma_I) in its  j-th component.
                     96: *> \endverbatim
                     97: *
                     98: *  Authors:
                     99: *  ========
                    100: *
1.15      bertrand  101: *> \author Univ. of Tennessee
                    102: *> \author Univ. of California Berkeley
                    103: *> \author Univ. of Colorado Denver
                    104: *> \author NAG Ltd.
1.8       bertrand  105: *
1.15      bertrand  106: *> \ingroup OTHERauxiliary
1.8       bertrand  107: *
                    108: *> \par Contributors:
                    109: *  ==================
                    110: *>
                    111: *>     Ren-Cang Li, Computer Science Division, University of California
                    112: *>     at Berkeley, USA
                    113: *>
                    114: *  =====================================================================
1.1       bertrand  115:       SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
                    116: *
1.18    ! bertrand  117: *  -- LAPACK auxiliary routine --
1.1       bertrand  118: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    119: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    120: *
                    121: *     .. Scalar Arguments ..
                    122:       INTEGER            I
                    123:       DOUBLE PRECISION   DSIGMA, RHO
                    124: *     ..
                    125: *     .. Array Arguments ..
                    126:       DOUBLE PRECISION   D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
                    127: *     ..
                    128: *
                    129: *  =====================================================================
                    130: *
                    131: *     .. Parameters ..
                    132:       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR
                    133:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
                    134:      $                   THREE = 3.0D+0, FOUR = 4.0D+0 )
                    135: *     ..
                    136: *     .. Local Scalars ..
                    137:       DOUBLE PRECISION   B, C, DEL, DELSQ, TAU, W
                    138: *     ..
                    139: *     .. Intrinsic Functions ..
                    140:       INTRINSIC          ABS, SQRT
                    141: *     ..
                    142: *     .. Executable Statements ..
                    143: *
                    144:       DEL = D( 2 ) - D( 1 )
                    145:       DELSQ = DEL*( D( 2 )+D( 1 ) )
                    146:       IF( I.EQ.1 ) THEN
                    147:          W = ONE + FOUR*RHO*( Z( 2 )*Z( 2 ) / ( D( 1 )+THREE*D( 2 ) )-
                    148:      $       Z( 1 )*Z( 1 ) / ( THREE*D( 1 )+D( 2 ) ) ) / DEL
                    149:          IF( W.GT.ZERO ) THEN
                    150:             B = DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
                    151:             C = RHO*Z( 1 )*Z( 1 )*DELSQ
                    152: *
                    153: *           B > ZERO, always
                    154: *
                    155: *           The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
                    156: *
                    157:             TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
                    158: *
                    159: *           The following TAU is DSIGMA - D( 1 )
                    160: *
                    161:             TAU = TAU / ( D( 1 )+SQRT( D( 1 )*D( 1 )+TAU ) )
                    162:             DSIGMA = D( 1 ) + TAU
                    163:             DELTA( 1 ) = -TAU
                    164:             DELTA( 2 ) = DEL - TAU
                    165:             WORK( 1 ) = TWO*D( 1 ) + TAU
                    166:             WORK( 2 ) = ( D( 1 )+TAU ) + D( 2 )
                    167: *           DELTA( 1 ) = -Z( 1 ) / TAU
                    168: *           DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
                    169:          ELSE
                    170:             B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
                    171:             C = RHO*Z( 2 )*Z( 2 )*DELSQ
                    172: *
                    173: *           The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
                    174: *
                    175:             IF( B.GT.ZERO ) THEN
                    176:                TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
                    177:             ELSE
                    178:                TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
                    179:             END IF
                    180: *
                    181: *           The following TAU is DSIGMA - D( 2 )
                    182: *
                    183:             TAU = TAU / ( D( 2 )+SQRT( ABS( D( 2 )*D( 2 )+TAU ) ) )
                    184:             DSIGMA = D( 2 ) + TAU
                    185:             DELTA( 1 ) = -( DEL+TAU )
                    186:             DELTA( 2 ) = -TAU
                    187:             WORK( 1 ) = D( 1 ) + TAU + D( 2 )
                    188:             WORK( 2 ) = TWO*D( 2 ) + TAU
                    189: *           DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
                    190: *           DELTA( 2 ) = -Z( 2 ) / TAU
                    191:          END IF
                    192: *        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
                    193: *        DELTA( 1 ) = DELTA( 1 ) / TEMP
                    194: *        DELTA( 2 ) = DELTA( 2 ) / TEMP
                    195:       ELSE
                    196: *
                    197: *        Now I=2
                    198: *
                    199:          B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
                    200:          C = RHO*Z( 2 )*Z( 2 )*DELSQ
                    201: *
                    202: *        The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
                    203: *
                    204:          IF( B.GT.ZERO ) THEN
                    205:             TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
                    206:          ELSE
                    207:             TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
                    208:          END IF
                    209: *
                    210: *        The following TAU is DSIGMA - D( 2 )
                    211: *
                    212:          TAU = TAU / ( D( 2 )+SQRT( D( 2 )*D( 2 )+TAU ) )
                    213:          DSIGMA = D( 2 ) + TAU
                    214:          DELTA( 1 ) = -( DEL+TAU )
                    215:          DELTA( 2 ) = -TAU
                    216:          WORK( 1 ) = D( 1 ) + TAU + D( 2 )
                    217:          WORK( 2 ) = TWO*D( 2 ) + TAU
                    218: *        DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
                    219: *        DELTA( 2 ) = -Z( 2 ) / TAU
                    220: *        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
                    221: *        DELTA( 1 ) = DELTA( 1 ) / TEMP
                    222: *        DELTA( 2 ) = DELTA( 2 ) / TEMP
                    223:       END IF
                    224:       RETURN
                    225: *
                    226: *     End of DLASD5
                    227: *
                    228:       END

CVSweb interface <joel.bertrand@systella.fr>