File:  [local] / rpl / lapack / lapack / dlasd3.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:18:07 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack vers la version 3.2.2.

    1:       SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
    2:      $                   LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
    3:      $                   INFO )
    4: *
    5: *  -- LAPACK auxiliary routine (version 3.2.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     June 2010
    9: *
   10: *     .. Scalar Arguments ..
   11:       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
   12:      $                   SQRE
   13: *     ..
   14: *     .. Array Arguments ..
   15:       INTEGER            CTOT( * ), IDXC( * )
   16:       DOUBLE PRECISION   D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
   17:      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
   18:      $                   Z( * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DLASD3 finds all the square roots of the roots of the secular
   25: *  equation, as defined by the values in D and Z.  It makes the
   26: *  appropriate calls to DLASD4 and then updates the singular
   27: *  vectors by matrix multiplication.
   28: *
   29: *  This code makes very mild assumptions about floating point
   30: *  arithmetic. It will work on machines with a guard digit in
   31: *  add/subtract, or on those binary machines without guard digits
   32: *  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
   33: *  It could conceivably fail on hexadecimal or decimal machines
   34: *  without guard digits, but we know of none.
   35: *
   36: *  DLASD3 is called from DLASD1.
   37: *
   38: *  Arguments
   39: *  =========
   40: *
   41: *  NL     (input) INTEGER
   42: *         The row dimension of the upper block.  NL >= 1.
   43: *
   44: *  NR     (input) INTEGER
   45: *         The row dimension of the lower block.  NR >= 1.
   46: *
   47: *  SQRE   (input) INTEGER
   48: *         = 0: the lower block is an NR-by-NR square matrix.
   49: *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
   50: *
   51: *         The bidiagonal matrix has N = NL + NR + 1 rows and
   52: *         M = N + SQRE >= N columns.
   53: *
   54: *  K      (input) INTEGER
   55: *         The size of the secular equation, 1 =< K = < N.
   56: *
   57: *  D      (output) DOUBLE PRECISION array, dimension(K)
   58: *         On exit the square roots of the roots of the secular equation,
   59: *         in ascending order.
   60: *
   61: *  Q      (workspace) DOUBLE PRECISION array,
   62: *                     dimension at least (LDQ,K).
   63: *
   64: *  LDQ    (input) INTEGER
   65: *         The leading dimension of the array Q.  LDQ >= K.
   66: *
   67: *  DSIGMA (input) DOUBLE PRECISION array, dimension(K)
   68: *         The first K elements of this array contain the old roots
   69: *         of the deflated updating problem.  These are the poles
   70: *         of the secular equation.
   71: *
   72: *  U      (output) DOUBLE PRECISION array, dimension (LDU, N)
   73: *         The last N - K columns of this matrix contain the deflated
   74: *         left singular vectors.
   75: *
   76: *  LDU    (input) INTEGER
   77: *         The leading dimension of the array U.  LDU >= N.
   78: *
   79: *  U2     (input/output) DOUBLE PRECISION array, dimension (LDU2, N)
   80: *         The first K columns of this matrix contain the non-deflated
   81: *         left singular vectors for the split problem.
   82: *
   83: *  LDU2   (input) INTEGER
   84: *         The leading dimension of the array U2.  LDU2 >= N.
   85: *
   86: *  VT     (output) DOUBLE PRECISION array, dimension (LDVT, M)
   87: *         The last M - K columns of VT' contain the deflated
   88: *         right singular vectors.
   89: *
   90: *  LDVT   (input) INTEGER
   91: *         The leading dimension of the array VT.  LDVT >= N.
   92: *
   93: *  VT2    (input/output) DOUBLE PRECISION array, dimension (LDVT2, N)
   94: *         The first K columns of VT2' contain the non-deflated
   95: *         right singular vectors for the split problem.
   96: *
   97: *  LDVT2  (input) INTEGER
   98: *         The leading dimension of the array VT2.  LDVT2 >= N.
   99: *
  100: *  IDXC   (input) INTEGER array, dimension ( N )
  101: *         The permutation used to arrange the columns of U (and rows of
  102: *         VT) into three groups:  the first group contains non-zero
  103: *         entries only at and above (or before) NL +1; the second
  104: *         contains non-zero entries only at and below (or after) NL+2;
  105: *         and the third is dense. The first column of U and the row of
  106: *         VT are treated separately, however.
  107: *
  108: *         The rows of the singular vectors found by DLASD4
  109: *         must be likewise permuted before the matrix multiplies can
  110: *         take place.
  111: *
  112: *  CTOT   (input) INTEGER array, dimension ( 4 )
  113: *         A count of the total number of the various types of columns
  114: *         in U (or rows in VT), as described in IDXC. The fourth column
  115: *         type is any column which has been deflated.
  116: *
  117: *  Z      (input) DOUBLE PRECISION array, dimension (K)
  118: *         The first K elements of this array contain the components
  119: *         of the deflation-adjusted updating row vector.
  120: *
  121: *  INFO   (output) INTEGER
  122: *         = 0:  successful exit.
  123: *         < 0:  if INFO = -i, the i-th argument had an illegal value.
  124: *         > 0:  if INFO = 1, a singular value did not converge
  125: *
  126: *  Further Details
  127: *  ===============
  128: *
  129: *  Based on contributions by
  130: *     Ming Gu and Huan Ren, Computer Science Division, University of
  131: *     California at Berkeley, USA
  132: *
  133: *  =====================================================================
  134: *
  135: *     .. Parameters ..
  136:       DOUBLE PRECISION   ONE, ZERO, NEGONE
  137:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0,
  138:      $                   NEGONE = -1.0D+0 )
  139: *     ..
  140: *     .. Local Scalars ..
  141:       INTEGER            CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
  142:       DOUBLE PRECISION   RHO, TEMP
  143: *     ..
  144: *     .. External Functions ..
  145:       DOUBLE PRECISION   DLAMC3, DNRM2
  146:       EXTERNAL           DLAMC3, DNRM2
  147: *     ..
  148: *     .. External Subroutines ..
  149:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLASCL, DLASD4, XERBLA
  150: *     ..
  151: *     .. Intrinsic Functions ..
  152:       INTRINSIC          ABS, SIGN, SQRT
  153: *     ..
  154: *     .. Executable Statements ..
  155: *
  156: *     Test the input parameters.
  157: *
  158:       INFO = 0
  159: *
  160:       IF( NL.LT.1 ) THEN
  161:          INFO = -1
  162:       ELSE IF( NR.LT.1 ) THEN
  163:          INFO = -2
  164:       ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
  165:          INFO = -3
  166:       END IF
  167: *
  168:       N = NL + NR + 1
  169:       M = N + SQRE
  170:       NLP1 = NL + 1
  171:       NLP2 = NL + 2
  172: *
  173:       IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
  174:          INFO = -4
  175:       ELSE IF( LDQ.LT.K ) THEN
  176:          INFO = -7
  177:       ELSE IF( LDU.LT.N ) THEN
  178:          INFO = -10
  179:       ELSE IF( LDU2.LT.N ) THEN
  180:          INFO = -12
  181:       ELSE IF( LDVT.LT.M ) THEN
  182:          INFO = -14
  183:       ELSE IF( LDVT2.LT.M ) THEN
  184:          INFO = -16
  185:       END IF
  186:       IF( INFO.NE.0 ) THEN
  187:          CALL XERBLA( 'DLASD3', -INFO )
  188:          RETURN
  189:       END IF
  190: *
  191: *     Quick return if possible
  192: *
  193:       IF( K.EQ.1 ) THEN
  194:          D( 1 ) = ABS( Z( 1 ) )
  195:          CALL DCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
  196:          IF( Z( 1 ).GT.ZERO ) THEN
  197:             CALL DCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
  198:          ELSE
  199:             DO 10 I = 1, N
  200:                U( I, 1 ) = -U2( I, 1 )
  201:    10       CONTINUE
  202:          END IF
  203:          RETURN
  204:       END IF
  205: *
  206: *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
  207: *     be computed with high relative accuracy (barring over/underflow).
  208: *     This is a problem on machines without a guard digit in
  209: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
  210: *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
  211: *     which on any of these machines zeros out the bottommost
  212: *     bit of DSIGMA(I) if it is 1; this makes the subsequent
  213: *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
  214: *     occurs. On binary machines with a guard digit (almost all
  215: *     machines) it does not change DSIGMA(I) at all. On hexadecimal
  216: *     and decimal machines with a guard digit, it slightly
  217: *     changes the bottommost bits of DSIGMA(I). It does not account
  218: *     for hexadecimal or decimal machines without guard digits
  219: *     (we know of none). We use a subroutine call to compute
  220: *     2*DSIGMA(I) to prevent optimizing compilers from eliminating
  221: *     this code.
  222: *
  223:       DO 20 I = 1, K
  224:          DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
  225:    20 CONTINUE
  226: *
  227: *     Keep a copy of Z.
  228: *
  229:       CALL DCOPY( K, Z, 1, Q, 1 )
  230: *
  231: *     Normalize Z.
  232: *
  233:       RHO = DNRM2( K, Z, 1 )
  234:       CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
  235:       RHO = RHO*RHO
  236: *
  237: *     Find the new singular values.
  238: *
  239:       DO 30 J = 1, K
  240:          CALL DLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
  241:      $                VT( 1, J ), INFO )
  242: *
  243: *        If the zero finder fails, the computation is terminated.
  244: *
  245:          IF( INFO.NE.0 ) THEN
  246:             RETURN
  247:          END IF
  248:    30 CONTINUE
  249: *
  250: *     Compute updated Z.
  251: *
  252:       DO 60 I = 1, K
  253:          Z( I ) = U( I, K )*VT( I, K )
  254:          DO 40 J = 1, I - 1
  255:             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
  256:      $               ( DSIGMA( I )-DSIGMA( J ) ) /
  257:      $               ( DSIGMA( I )+DSIGMA( J ) ) )
  258:    40    CONTINUE
  259:          DO 50 J = I, K - 1
  260:             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
  261:      $               ( DSIGMA( I )-DSIGMA( J+1 ) ) /
  262:      $               ( DSIGMA( I )+DSIGMA( J+1 ) ) )
  263:    50    CONTINUE
  264:          Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
  265:    60 CONTINUE
  266: *
  267: *     Compute left singular vectors of the modified diagonal matrix,
  268: *     and store related information for the right singular vectors.
  269: *
  270:       DO 90 I = 1, K
  271:          VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
  272:          U( 1, I ) = NEGONE
  273:          DO 70 J = 2, K
  274:             VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
  275:             U( J, I ) = DSIGMA( J )*VT( J, I )
  276:    70    CONTINUE
  277:          TEMP = DNRM2( K, U( 1, I ), 1 )
  278:          Q( 1, I ) = U( 1, I ) / TEMP
  279:          DO 80 J = 2, K
  280:             JC = IDXC( J )
  281:             Q( J, I ) = U( JC, I ) / TEMP
  282:    80    CONTINUE
  283:    90 CONTINUE
  284: *
  285: *     Update the left singular vector matrix.
  286: *
  287:       IF( K.EQ.2 ) THEN
  288:          CALL DGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
  289:      $               LDU )
  290:          GO TO 100
  291:       END IF
  292:       IF( CTOT( 1 ).GT.0 ) THEN
  293:          CALL DGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
  294:      $               Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
  295:          IF( CTOT( 3 ).GT.0 ) THEN
  296:             KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  297:             CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
  298:      $                  LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
  299:          END IF
  300:       ELSE IF( CTOT( 3 ).GT.0 ) THEN
  301:          KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  302:          CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
  303:      $               LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
  304:       ELSE
  305:          CALL DLACPY( 'F', NL, K, U2, LDU2, U, LDU )
  306:       END IF
  307:       CALL DCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
  308:       KTEMP = 2 + CTOT( 1 )
  309:       CTEMP = CTOT( 2 ) + CTOT( 3 )
  310:       CALL DGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
  311:      $            Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
  312: *
  313: *     Generate the right singular vectors.
  314: *
  315:   100 CONTINUE
  316:       DO 120 I = 1, K
  317:          TEMP = DNRM2( K, VT( 1, I ), 1 )
  318:          Q( I, 1 ) = VT( 1, I ) / TEMP
  319:          DO 110 J = 2, K
  320:             JC = IDXC( J )
  321:             Q( I, J ) = VT( JC, I ) / TEMP
  322:   110    CONTINUE
  323:   120 CONTINUE
  324: *
  325: *     Update the right singular vector matrix.
  326: *
  327:       IF( K.EQ.2 ) THEN
  328:          CALL DGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
  329:      $               VT, LDVT )
  330:          RETURN
  331:       END IF
  332:       KTEMP = 1 + CTOT( 1 )
  333:       CALL DGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
  334:      $            VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
  335:       KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  336:       IF( KTEMP.LE.LDVT2 )
  337:      $   CALL DGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
  338:      $               LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
  339:      $               LDVT )
  340: *
  341:       KTEMP = CTOT( 1 ) + 1
  342:       NRP1 = NR + SQRE
  343:       IF( KTEMP.GT.1 ) THEN
  344:          DO 130 I = 1, K
  345:             Q( I, KTEMP ) = Q( I, 1 )
  346:   130    CONTINUE
  347:          DO 140 I = NLP2, M
  348:             VT2( KTEMP, I ) = VT2( 1, I )
  349:   140    CONTINUE
  350:       END IF
  351:       CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
  352:       CALL DGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
  353:      $            VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
  354: *
  355:       RETURN
  356: *
  357: *     End of DLASD3
  358: *
  359:       END

CVSweb interface <joel.bertrand@systella.fr>