File:  [local] / rpl / lapack / lapack / dlasd3.f
Revision 1.21: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:00 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DLASD3 finds all square roots of the roots of the secular equation, as defined by the values in D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLASD3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
   22: *                          LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
   23: *                          INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
   27: *      $                   SQRE
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            CTOT( * ), IDXC( * )
   31: *       DOUBLE PRECISION   D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
   32: *      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
   33: *      $                   Z( * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DLASD3 finds all the square roots of the roots of the secular
   43: *> equation, as defined by the values in D and Z.  It makes the
   44: *> appropriate calls to DLASD4 and then updates the singular
   45: *> vectors by matrix multiplication.
   46: *>
   47: *> This code makes very mild assumptions about floating point
   48: *> arithmetic. It will work on machines with a guard digit in
   49: *> add/subtract, or on those binary machines without guard digits
   50: *> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
   51: *> It could conceivably fail on hexadecimal or decimal machines
   52: *> without guard digits, but we know of none.
   53: *>
   54: *> DLASD3 is called from DLASD1.
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] NL
   61: *> \verbatim
   62: *>          NL is INTEGER
   63: *>         The row dimension of the upper block.  NL >= 1.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] NR
   67: *> \verbatim
   68: *>          NR is INTEGER
   69: *>         The row dimension of the lower block.  NR >= 1.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] SQRE
   73: *> \verbatim
   74: *>          SQRE is INTEGER
   75: *>         = 0: the lower block is an NR-by-NR square matrix.
   76: *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
   77: *>
   78: *>         The bidiagonal matrix has N = NL + NR + 1 rows and
   79: *>         M = N + SQRE >= N columns.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] K
   83: *> \verbatim
   84: *>          K is INTEGER
   85: *>         The size of the secular equation, 1 =< K = < N.
   86: *> \endverbatim
   87: *>
   88: *> \param[out] D
   89: *> \verbatim
   90: *>          D is DOUBLE PRECISION array, dimension(K)
   91: *>         On exit the square roots of the roots of the secular equation,
   92: *>         in ascending order.
   93: *> \endverbatim
   94: *>
   95: *> \param[out] Q
   96: *> \verbatim
   97: *>          Q is DOUBLE PRECISION array, dimension (LDQ,K)
   98: *> \endverbatim
   99: *>
  100: *> \param[in] LDQ
  101: *> \verbatim
  102: *>          LDQ is INTEGER
  103: *>         The leading dimension of the array Q.  LDQ >= K.
  104: *> \endverbatim
  105: *>
  106: *> \param[in,out] DSIGMA
  107: *> \verbatim
  108: *>          DSIGMA is DOUBLE PRECISION array, dimension(K)
  109: *>         The first K elements of this array contain the old roots
  110: *>         of the deflated updating problem.  These are the poles
  111: *>         of the secular equation.
  112: *> \endverbatim
  113: *>
  114: *> \param[out] U
  115: *> \verbatim
  116: *>          U is DOUBLE PRECISION array, dimension (LDU, N)
  117: *>         The last N - K columns of this matrix contain the deflated
  118: *>         left singular vectors.
  119: *> \endverbatim
  120: *>
  121: *> \param[in] LDU
  122: *> \verbatim
  123: *>          LDU is INTEGER
  124: *>         The leading dimension of the array U.  LDU >= N.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] U2
  128: *> \verbatim
  129: *>          U2 is DOUBLE PRECISION array, dimension (LDU2, N)
  130: *>         The first K columns of this matrix contain the non-deflated
  131: *>         left singular vectors for the split problem.
  132: *> \endverbatim
  133: *>
  134: *> \param[in] LDU2
  135: *> \verbatim
  136: *>          LDU2 is INTEGER
  137: *>         The leading dimension of the array U2.  LDU2 >= N.
  138: *> \endverbatim
  139: *>
  140: *> \param[out] VT
  141: *> \verbatim
  142: *>          VT is DOUBLE PRECISION array, dimension (LDVT, M)
  143: *>         The last M - K columns of VT**T contain the deflated
  144: *>         right singular vectors.
  145: *> \endverbatim
  146: *>
  147: *> \param[in] LDVT
  148: *> \verbatim
  149: *>          LDVT is INTEGER
  150: *>         The leading dimension of the array VT.  LDVT >= N.
  151: *> \endverbatim
  152: *>
  153: *> \param[in,out] VT2
  154: *> \verbatim
  155: *>          VT2 is DOUBLE PRECISION array, dimension (LDVT2, N)
  156: *>         The first K columns of VT2**T contain the non-deflated
  157: *>         right singular vectors for the split problem.
  158: *> \endverbatim
  159: *>
  160: *> \param[in] LDVT2
  161: *> \verbatim
  162: *>          LDVT2 is INTEGER
  163: *>         The leading dimension of the array VT2.  LDVT2 >= N.
  164: *> \endverbatim
  165: *>
  166: *> \param[in] IDXC
  167: *> \verbatim
  168: *>          IDXC is INTEGER array, dimension ( N )
  169: *>         The permutation used to arrange the columns of U (and rows of
  170: *>         VT) into three groups:  the first group contains non-zero
  171: *>         entries only at and above (or before) NL +1; the second
  172: *>         contains non-zero entries only at and below (or after) NL+2;
  173: *>         and the third is dense. The first column of U and the row of
  174: *>         VT are treated separately, however.
  175: *>
  176: *>         The rows of the singular vectors found by DLASD4
  177: *>         must be likewise permuted before the matrix multiplies can
  178: *>         take place.
  179: *> \endverbatim
  180: *>
  181: *> \param[in] CTOT
  182: *> \verbatim
  183: *>          CTOT is INTEGER array, dimension ( 4 )
  184: *>         A count of the total number of the various types of columns
  185: *>         in U (or rows in VT), as described in IDXC. The fourth column
  186: *>         type is any column which has been deflated.
  187: *> \endverbatim
  188: *>
  189: *> \param[in,out] Z
  190: *> \verbatim
  191: *>          Z is DOUBLE PRECISION array, dimension (K)
  192: *>         The first K elements of this array contain the components
  193: *>         of the deflation-adjusted updating row vector.
  194: *> \endverbatim
  195: *>
  196: *> \param[out] INFO
  197: *> \verbatim
  198: *>          INFO is INTEGER
  199: *>         = 0:  successful exit.
  200: *>         < 0:  if INFO = -i, the i-th argument had an illegal value.
  201: *>         > 0:  if INFO = 1, a singular value did not converge
  202: *> \endverbatim
  203: *
  204: *  Authors:
  205: *  ========
  206: *
  207: *> \author Univ. of Tennessee
  208: *> \author Univ. of California Berkeley
  209: *> \author Univ. of Colorado Denver
  210: *> \author NAG Ltd.
  211: *
  212: *> \date June 2017
  213: *
  214: *> \ingroup OTHERauxiliary
  215: *
  216: *> \par Contributors:
  217: *  ==================
  218: *>
  219: *>     Ming Gu and Huan Ren, Computer Science Division, University of
  220: *>     California at Berkeley, USA
  221: *>
  222: *  =====================================================================
  223:       SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
  224:      $                   LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
  225:      $                   INFO )
  226: *
  227: *  -- LAPACK auxiliary routine (version 3.7.1) --
  228: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  229: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  230: *     June 2017
  231: *
  232: *     .. Scalar Arguments ..
  233:       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
  234:      $                   SQRE
  235: *     ..
  236: *     .. Array Arguments ..
  237:       INTEGER            CTOT( * ), IDXC( * )
  238:       DOUBLE PRECISION   D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
  239:      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
  240:      $                   Z( * )
  241: *     ..
  242: *
  243: *  =====================================================================
  244: *
  245: *     .. Parameters ..
  246:       DOUBLE PRECISION   ONE, ZERO, NEGONE
  247:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0,
  248:      $                   NEGONE = -1.0D+0 )
  249: *     ..
  250: *     .. Local Scalars ..
  251:       INTEGER            CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
  252:       DOUBLE PRECISION   RHO, TEMP
  253: *     ..
  254: *     .. External Functions ..
  255:       DOUBLE PRECISION   DLAMC3, DNRM2
  256:       EXTERNAL           DLAMC3, DNRM2
  257: *     ..
  258: *     .. External Subroutines ..
  259:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLASCL, DLASD4, XERBLA
  260: *     ..
  261: *     .. Intrinsic Functions ..
  262:       INTRINSIC          ABS, SIGN, SQRT
  263: *     ..
  264: *     .. Executable Statements ..
  265: *
  266: *     Test the input parameters.
  267: *
  268:       INFO = 0
  269: *
  270:       IF( NL.LT.1 ) THEN
  271:          INFO = -1
  272:       ELSE IF( NR.LT.1 ) THEN
  273:          INFO = -2
  274:       ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
  275:          INFO = -3
  276:       END IF
  277: *
  278:       N = NL + NR + 1
  279:       M = N + SQRE
  280:       NLP1 = NL + 1
  281:       NLP2 = NL + 2
  282: *
  283:       IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
  284:          INFO = -4
  285:       ELSE IF( LDQ.LT.K ) THEN
  286:          INFO = -7
  287:       ELSE IF( LDU.LT.N ) THEN
  288:          INFO = -10
  289:       ELSE IF( LDU2.LT.N ) THEN
  290:          INFO = -12
  291:       ELSE IF( LDVT.LT.M ) THEN
  292:          INFO = -14
  293:       ELSE IF( LDVT2.LT.M ) THEN
  294:          INFO = -16
  295:       END IF
  296:       IF( INFO.NE.0 ) THEN
  297:          CALL XERBLA( 'DLASD3', -INFO )
  298:          RETURN
  299:       END IF
  300: *
  301: *     Quick return if possible
  302: *
  303:       IF( K.EQ.1 ) THEN
  304:          D( 1 ) = ABS( Z( 1 ) )
  305:          CALL DCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
  306:          IF( Z( 1 ).GT.ZERO ) THEN
  307:             CALL DCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
  308:          ELSE
  309:             DO 10 I = 1, N
  310:                U( I, 1 ) = -U2( I, 1 )
  311:    10       CONTINUE
  312:          END IF
  313:          RETURN
  314:       END IF
  315: *
  316: *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
  317: *     be computed with high relative accuracy (barring over/underflow).
  318: *     This is a problem on machines without a guard digit in
  319: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
  320: *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
  321: *     which on any of these machines zeros out the bottommost
  322: *     bit of DSIGMA(I) if it is 1; this makes the subsequent
  323: *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
  324: *     occurs. On binary machines with a guard digit (almost all
  325: *     machines) it does not change DSIGMA(I) at all. On hexadecimal
  326: *     and decimal machines with a guard digit, it slightly
  327: *     changes the bottommost bits of DSIGMA(I). It does not account
  328: *     for hexadecimal or decimal machines without guard digits
  329: *     (we know of none). We use a subroutine call to compute
  330: *     2*DSIGMA(I) to prevent optimizing compilers from eliminating
  331: *     this code.
  332: *
  333:       DO 20 I = 1, K
  334:          DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
  335:    20 CONTINUE
  336: *
  337: *     Keep a copy of Z.
  338: *
  339:       CALL DCOPY( K, Z, 1, Q, 1 )
  340: *
  341: *     Normalize Z.
  342: *
  343:       RHO = DNRM2( K, Z, 1 )
  344:       CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
  345:       RHO = RHO*RHO
  346: *
  347: *     Find the new singular values.
  348: *
  349:       DO 30 J = 1, K
  350:          CALL DLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
  351:      $                VT( 1, J ), INFO )
  352: *
  353: *        If the zero finder fails, report the convergence failure.
  354: *
  355:          IF( INFO.NE.0 ) THEN
  356:             RETURN
  357:          END IF
  358:    30 CONTINUE
  359: *
  360: *     Compute updated Z.
  361: *
  362:       DO 60 I = 1, K
  363:          Z( I ) = U( I, K )*VT( I, K )
  364:          DO 40 J = 1, I - 1
  365:             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
  366:      $               ( DSIGMA( I )-DSIGMA( J ) ) /
  367:      $               ( DSIGMA( I )+DSIGMA( J ) ) )
  368:    40    CONTINUE
  369:          DO 50 J = I, K - 1
  370:             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
  371:      $               ( DSIGMA( I )-DSIGMA( J+1 ) ) /
  372:      $               ( DSIGMA( I )+DSIGMA( J+1 ) ) )
  373:    50    CONTINUE
  374:          Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
  375:    60 CONTINUE
  376: *
  377: *     Compute left singular vectors of the modified diagonal matrix,
  378: *     and store related information for the right singular vectors.
  379: *
  380:       DO 90 I = 1, K
  381:          VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
  382:          U( 1, I ) = NEGONE
  383:          DO 70 J = 2, K
  384:             VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
  385:             U( J, I ) = DSIGMA( J )*VT( J, I )
  386:    70    CONTINUE
  387:          TEMP = DNRM2( K, U( 1, I ), 1 )
  388:          Q( 1, I ) = U( 1, I ) / TEMP
  389:          DO 80 J = 2, K
  390:             JC = IDXC( J )
  391:             Q( J, I ) = U( JC, I ) / TEMP
  392:    80    CONTINUE
  393:    90 CONTINUE
  394: *
  395: *     Update the left singular vector matrix.
  396: *
  397:       IF( K.EQ.2 ) THEN
  398:          CALL DGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
  399:      $               LDU )
  400:          GO TO 100
  401:       END IF
  402:       IF( CTOT( 1 ).GT.0 ) THEN
  403:          CALL DGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
  404:      $               Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
  405:          IF( CTOT( 3 ).GT.0 ) THEN
  406:             KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  407:             CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
  408:      $                  LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
  409:          END IF
  410:       ELSE IF( CTOT( 3 ).GT.0 ) THEN
  411:          KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  412:          CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
  413:      $               LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
  414:       ELSE
  415:          CALL DLACPY( 'F', NL, K, U2, LDU2, U, LDU )
  416:       END IF
  417:       CALL DCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
  418:       KTEMP = 2 + CTOT( 1 )
  419:       CTEMP = CTOT( 2 ) + CTOT( 3 )
  420:       CALL DGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
  421:      $            Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
  422: *
  423: *     Generate the right singular vectors.
  424: *
  425:   100 CONTINUE
  426:       DO 120 I = 1, K
  427:          TEMP = DNRM2( K, VT( 1, I ), 1 )
  428:          Q( I, 1 ) = VT( 1, I ) / TEMP
  429:          DO 110 J = 2, K
  430:             JC = IDXC( J )
  431:             Q( I, J ) = VT( JC, I ) / TEMP
  432:   110    CONTINUE
  433:   120 CONTINUE
  434: *
  435: *     Update the right singular vector matrix.
  436: *
  437:       IF( K.EQ.2 ) THEN
  438:          CALL DGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
  439:      $               VT, LDVT )
  440:          RETURN
  441:       END IF
  442:       KTEMP = 1 + CTOT( 1 )
  443:       CALL DGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
  444:      $            VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
  445:       KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  446:       IF( KTEMP.LE.LDVT2 )
  447:      $   CALL DGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
  448:      $               LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
  449:      $               LDVT )
  450: *
  451:       KTEMP = CTOT( 1 ) + 1
  452:       NRP1 = NR + SQRE
  453:       IF( KTEMP.GT.1 ) THEN
  454:          DO 130 I = 1, K
  455:             Q( I, KTEMP ) = Q( I, 1 )
  456:   130    CONTINUE
  457:          DO 140 I = NLP2, M
  458:             VT2( KTEMP, I ) = VT2( 1, I )
  459:   140    CONTINUE
  460:       END IF
  461:       CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
  462:       CALL DGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
  463:      $            VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
  464: *
  465:       RETURN
  466: *
  467: *     End of DLASD3
  468: *
  469:       END

CVSweb interface <joel.bertrand@systella.fr>