File:  [local] / rpl / lapack / lapack / dlasd3.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:22 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b DLASD3 finds all square roots of the roots of the secular equation, as defined by the values in D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLASD3 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd3.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd3.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd3.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
   22: *                          LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
   23: *                          INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
   27: *      $                   SQRE
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            CTOT( * ), IDXC( * )
   31: *       DOUBLE PRECISION   D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
   32: *      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
   33: *      $                   Z( * )
   34: *       ..
   35: *  
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DLASD3 finds all the square roots of the roots of the secular
   43: *> equation, as defined by the values in D and Z.  It makes the
   44: *> appropriate calls to DLASD4 and then updates the singular
   45: *> vectors by matrix multiplication.
   46: *>
   47: *> This code makes very mild assumptions about floating point
   48: *> arithmetic. It will work on machines with a guard digit in
   49: *> add/subtract, or on those binary machines without guard digits
   50: *> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
   51: *> It could conceivably fail on hexadecimal or decimal machines
   52: *> without guard digits, but we know of none.
   53: *>
   54: *> DLASD3 is called from DLASD1.
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] NL
   61: *> \verbatim
   62: *>          NL is INTEGER
   63: *>         The row dimension of the upper block.  NL >= 1.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] NR
   67: *> \verbatim
   68: *>          NR is INTEGER
   69: *>         The row dimension of the lower block.  NR >= 1.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] SQRE
   73: *> \verbatim
   74: *>          SQRE is INTEGER
   75: *>         = 0: the lower block is an NR-by-NR square matrix.
   76: *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
   77: *>
   78: *>         The bidiagonal matrix has N = NL + NR + 1 rows and
   79: *>         M = N + SQRE >= N columns.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] K
   83: *> \verbatim
   84: *>          K is INTEGER
   85: *>         The size of the secular equation, 1 =< K = < N.
   86: *> \endverbatim
   87: *>
   88: *> \param[out] D
   89: *> \verbatim
   90: *>          D is DOUBLE PRECISION array, dimension(K)
   91: *>         On exit the square roots of the roots of the secular equation,
   92: *>         in ascending order.
   93: *> \endverbatim
   94: *>
   95: *> \param[out] Q
   96: *> \verbatim
   97: *>          Q is DOUBLE PRECISION array,
   98: *>                     dimension at least (LDQ,K).
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LDQ
  102: *> \verbatim
  103: *>          LDQ is INTEGER
  104: *>         The leading dimension of the array Q.  LDQ >= K.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] DSIGMA
  108: *> \verbatim
  109: *>          DSIGMA is DOUBLE PRECISION array, dimension(K)
  110: *>         The first K elements of this array contain the old roots
  111: *>         of the deflated updating problem.  These are the poles
  112: *>         of the secular equation.
  113: *> \endverbatim
  114: *>
  115: *> \param[out] U
  116: *> \verbatim
  117: *>          U is DOUBLE PRECISION array, dimension (LDU, N)
  118: *>         The last N - K columns of this matrix contain the deflated
  119: *>         left singular vectors.
  120: *> \endverbatim
  121: *>
  122: *> \param[in] LDU
  123: *> \verbatim
  124: *>          LDU is INTEGER
  125: *>         The leading dimension of the array U.  LDU >= N.
  126: *> \endverbatim
  127: *>
  128: *> \param[in,out] U2
  129: *> \verbatim
  130: *>          U2 is DOUBLE PRECISION array, dimension (LDU2, N)
  131: *>         The first K columns of this matrix contain the non-deflated
  132: *>         left singular vectors for the split problem.
  133: *> \endverbatim
  134: *>
  135: *> \param[in] LDU2
  136: *> \verbatim
  137: *>          LDU2 is INTEGER
  138: *>         The leading dimension of the array U2.  LDU2 >= N.
  139: *> \endverbatim
  140: *>
  141: *> \param[out] VT
  142: *> \verbatim
  143: *>          VT is DOUBLE PRECISION array, dimension (LDVT, M)
  144: *>         The last M - K columns of VT**T contain the deflated
  145: *>         right singular vectors.
  146: *> \endverbatim
  147: *>
  148: *> \param[in] LDVT
  149: *> \verbatim
  150: *>          LDVT is INTEGER
  151: *>         The leading dimension of the array VT.  LDVT >= N.
  152: *> \endverbatim
  153: *>
  154: *> \param[in,out] VT2
  155: *> \verbatim
  156: *>          VT2 is DOUBLE PRECISION array, dimension (LDVT2, N)
  157: *>         The first K columns of VT2**T contain the non-deflated
  158: *>         right singular vectors for the split problem.
  159: *> \endverbatim
  160: *>
  161: *> \param[in] LDVT2
  162: *> \verbatim
  163: *>          LDVT2 is INTEGER
  164: *>         The leading dimension of the array VT2.  LDVT2 >= N.
  165: *> \endverbatim
  166: *>
  167: *> \param[in] IDXC
  168: *> \verbatim
  169: *>          IDXC is INTEGER array, dimension ( N )
  170: *>         The permutation used to arrange the columns of U (and rows of
  171: *>         VT) into three groups:  the first group contains non-zero
  172: *>         entries only at and above (or before) NL +1; the second
  173: *>         contains non-zero entries only at and below (or after) NL+2;
  174: *>         and the third is dense. The first column of U and the row of
  175: *>         VT are treated separately, however.
  176: *>
  177: *>         The rows of the singular vectors found by DLASD4
  178: *>         must be likewise permuted before the matrix multiplies can
  179: *>         take place.
  180: *> \endverbatim
  181: *>
  182: *> \param[in] CTOT
  183: *> \verbatim
  184: *>          CTOT is INTEGER array, dimension ( 4 )
  185: *>         A count of the total number of the various types of columns
  186: *>         in U (or rows in VT), as described in IDXC. The fourth column
  187: *>         type is any column which has been deflated.
  188: *> \endverbatim
  189: *>
  190: *> \param[in] Z
  191: *> \verbatim
  192: *>          Z is DOUBLE PRECISION array, dimension (K)
  193: *>         The first K elements of this array contain the components
  194: *>         of the deflation-adjusted updating row vector.
  195: *> \endverbatim
  196: *>
  197: *> \param[out] INFO
  198: *> \verbatim
  199: *>          INFO is INTEGER
  200: *>         = 0:  successful exit.
  201: *>         < 0:  if INFO = -i, the i-th argument had an illegal value.
  202: *>         > 0:  if INFO = 1, a singular value did not converge
  203: *> \endverbatim
  204: *
  205: *  Authors:
  206: *  ========
  207: *
  208: *> \author Univ. of Tennessee 
  209: *> \author Univ. of California Berkeley 
  210: *> \author Univ. of Colorado Denver 
  211: *> \author NAG Ltd. 
  212: *
  213: *> \date September 2012
  214: *
  215: *> \ingroup auxOTHERauxiliary
  216: *
  217: *> \par Contributors:
  218: *  ==================
  219: *>
  220: *>     Ming Gu and Huan Ren, Computer Science Division, University of
  221: *>     California at Berkeley, USA
  222: *>
  223: *  =====================================================================
  224:       SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
  225:      $                   LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
  226:      $                   INFO )
  227: *
  228: *  -- LAPACK auxiliary routine (version 3.4.2) --
  229: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  230: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  231: *     September 2012
  232: *
  233: *     .. Scalar Arguments ..
  234:       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
  235:      $                   SQRE
  236: *     ..
  237: *     .. Array Arguments ..
  238:       INTEGER            CTOT( * ), IDXC( * )
  239:       DOUBLE PRECISION   D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
  240:      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
  241:      $                   Z( * )
  242: *     ..
  243: *
  244: *  =====================================================================
  245: *
  246: *     .. Parameters ..
  247:       DOUBLE PRECISION   ONE, ZERO, NEGONE
  248:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0,
  249:      $                   NEGONE = -1.0D+0 )
  250: *     ..
  251: *     .. Local Scalars ..
  252:       INTEGER            CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
  253:       DOUBLE PRECISION   RHO, TEMP
  254: *     ..
  255: *     .. External Functions ..
  256:       DOUBLE PRECISION   DLAMC3, DNRM2
  257:       EXTERNAL           DLAMC3, DNRM2
  258: *     ..
  259: *     .. External Subroutines ..
  260:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLASCL, DLASD4, XERBLA
  261: *     ..
  262: *     .. Intrinsic Functions ..
  263:       INTRINSIC          ABS, SIGN, SQRT
  264: *     ..
  265: *     .. Executable Statements ..
  266: *
  267: *     Test the input parameters.
  268: *
  269:       INFO = 0
  270: *
  271:       IF( NL.LT.1 ) THEN
  272:          INFO = -1
  273:       ELSE IF( NR.LT.1 ) THEN
  274:          INFO = -2
  275:       ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
  276:          INFO = -3
  277:       END IF
  278: *
  279:       N = NL + NR + 1
  280:       M = N + SQRE
  281:       NLP1 = NL + 1
  282:       NLP2 = NL + 2
  283: *
  284:       IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
  285:          INFO = -4
  286:       ELSE IF( LDQ.LT.K ) THEN
  287:          INFO = -7
  288:       ELSE IF( LDU.LT.N ) THEN
  289:          INFO = -10
  290:       ELSE IF( LDU2.LT.N ) THEN
  291:          INFO = -12
  292:       ELSE IF( LDVT.LT.M ) THEN
  293:          INFO = -14
  294:       ELSE IF( LDVT2.LT.M ) THEN
  295:          INFO = -16
  296:       END IF
  297:       IF( INFO.NE.0 ) THEN
  298:          CALL XERBLA( 'DLASD3', -INFO )
  299:          RETURN
  300:       END IF
  301: *
  302: *     Quick return if possible
  303: *
  304:       IF( K.EQ.1 ) THEN
  305:          D( 1 ) = ABS( Z( 1 ) )
  306:          CALL DCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
  307:          IF( Z( 1 ).GT.ZERO ) THEN
  308:             CALL DCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
  309:          ELSE
  310:             DO 10 I = 1, N
  311:                U( I, 1 ) = -U2( I, 1 )
  312:    10       CONTINUE
  313:          END IF
  314:          RETURN
  315:       END IF
  316: *
  317: *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
  318: *     be computed with high relative accuracy (barring over/underflow).
  319: *     This is a problem on machines without a guard digit in
  320: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
  321: *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
  322: *     which on any of these machines zeros out the bottommost
  323: *     bit of DSIGMA(I) if it is 1; this makes the subsequent
  324: *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
  325: *     occurs. On binary machines with a guard digit (almost all
  326: *     machines) it does not change DSIGMA(I) at all. On hexadecimal
  327: *     and decimal machines with a guard digit, it slightly
  328: *     changes the bottommost bits of DSIGMA(I). It does not account
  329: *     for hexadecimal or decimal machines without guard digits
  330: *     (we know of none). We use a subroutine call to compute
  331: *     2*DSIGMA(I) to prevent optimizing compilers from eliminating
  332: *     this code.
  333: *
  334:       DO 20 I = 1, K
  335:          DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
  336:    20 CONTINUE
  337: *
  338: *     Keep a copy of Z.
  339: *
  340:       CALL DCOPY( K, Z, 1, Q, 1 )
  341: *
  342: *     Normalize Z.
  343: *
  344:       RHO = DNRM2( K, Z, 1 )
  345:       CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
  346:       RHO = RHO*RHO
  347: *
  348: *     Find the new singular values.
  349: *
  350:       DO 30 J = 1, K
  351:          CALL DLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
  352:      $                VT( 1, J ), INFO )
  353: *
  354: *        If the zero finder fails, the computation is terminated.
  355: *
  356:          IF( INFO.NE.0 ) THEN
  357:             RETURN
  358:          END IF
  359:    30 CONTINUE
  360: *
  361: *     Compute updated Z.
  362: *
  363:       DO 60 I = 1, K
  364:          Z( I ) = U( I, K )*VT( I, K )
  365:          DO 40 J = 1, I - 1
  366:             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
  367:      $               ( DSIGMA( I )-DSIGMA( J ) ) /
  368:      $               ( DSIGMA( I )+DSIGMA( J ) ) )
  369:    40    CONTINUE
  370:          DO 50 J = I, K - 1
  371:             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
  372:      $               ( DSIGMA( I )-DSIGMA( J+1 ) ) /
  373:      $               ( DSIGMA( I )+DSIGMA( J+1 ) ) )
  374:    50    CONTINUE
  375:          Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
  376:    60 CONTINUE
  377: *
  378: *     Compute left singular vectors of the modified diagonal matrix,
  379: *     and store related information for the right singular vectors.
  380: *
  381:       DO 90 I = 1, K
  382:          VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
  383:          U( 1, I ) = NEGONE
  384:          DO 70 J = 2, K
  385:             VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
  386:             U( J, I ) = DSIGMA( J )*VT( J, I )
  387:    70    CONTINUE
  388:          TEMP = DNRM2( K, U( 1, I ), 1 )
  389:          Q( 1, I ) = U( 1, I ) / TEMP
  390:          DO 80 J = 2, K
  391:             JC = IDXC( J )
  392:             Q( J, I ) = U( JC, I ) / TEMP
  393:    80    CONTINUE
  394:    90 CONTINUE
  395: *
  396: *     Update the left singular vector matrix.
  397: *
  398:       IF( K.EQ.2 ) THEN
  399:          CALL DGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
  400:      $               LDU )
  401:          GO TO 100
  402:       END IF
  403:       IF( CTOT( 1 ).GT.0 ) THEN
  404:          CALL DGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
  405:      $               Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
  406:          IF( CTOT( 3 ).GT.0 ) THEN
  407:             KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  408:             CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
  409:      $                  LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
  410:          END IF
  411:       ELSE IF( CTOT( 3 ).GT.0 ) THEN
  412:          KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  413:          CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
  414:      $               LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
  415:       ELSE
  416:          CALL DLACPY( 'F', NL, K, U2, LDU2, U, LDU )
  417:       END IF
  418:       CALL DCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
  419:       KTEMP = 2 + CTOT( 1 )
  420:       CTEMP = CTOT( 2 ) + CTOT( 3 )
  421:       CALL DGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
  422:      $            Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
  423: *
  424: *     Generate the right singular vectors.
  425: *
  426:   100 CONTINUE
  427:       DO 120 I = 1, K
  428:          TEMP = DNRM2( K, VT( 1, I ), 1 )
  429:          Q( I, 1 ) = VT( 1, I ) / TEMP
  430:          DO 110 J = 2, K
  431:             JC = IDXC( J )
  432:             Q( I, J ) = VT( JC, I ) / TEMP
  433:   110    CONTINUE
  434:   120 CONTINUE
  435: *
  436: *     Update the right singular vector matrix.
  437: *
  438:       IF( K.EQ.2 ) THEN
  439:          CALL DGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
  440:      $               VT, LDVT )
  441:          RETURN
  442:       END IF
  443:       KTEMP = 1 + CTOT( 1 )
  444:       CALL DGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
  445:      $            VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
  446:       KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  447:       IF( KTEMP.LE.LDVT2 )
  448:      $   CALL DGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
  449:      $               LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
  450:      $               LDVT )
  451: *
  452:       KTEMP = CTOT( 1 ) + 1
  453:       NRP1 = NR + SQRE
  454:       IF( KTEMP.GT.1 ) THEN
  455:          DO 130 I = 1, K
  456:             Q( I, KTEMP ) = Q( I, 1 )
  457:   130    CONTINUE
  458:          DO 140 I = NLP2, M
  459:             VT2( KTEMP, I ) = VT2( 1, I )
  460:   140    CONTINUE
  461:       END IF
  462:       CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
  463:       CALL DGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
  464:      $            VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
  465: *
  466:       RETURN
  467: *
  468: *     End of DLASD3
  469: *
  470:       END

CVSweb interface <joel.bertrand@systella.fr>