Annotation of rpl/lapack/lapack/dlasd3.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
                      2:      $                   LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
                      3:      $                   INFO )
                      4: *
                      5: *  -- LAPACK auxiliary routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
                     12:      $                   SQRE
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       INTEGER            CTOT( * ), IDXC( * )
                     16:       DOUBLE PRECISION   D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
                     17:      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
                     18:      $                   Z( * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  DLASD3 finds all the square roots of the roots of the secular
                     25: *  equation, as defined by the values in D and Z.  It makes the
                     26: *  appropriate calls to DLASD4 and then updates the singular
                     27: *  vectors by matrix multiplication.
                     28: *
                     29: *  This code makes very mild assumptions about floating point
                     30: *  arithmetic. It will work on machines with a guard digit in
                     31: *  add/subtract, or on those binary machines without guard digits
                     32: *  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
                     33: *  It could conceivably fail on hexadecimal or decimal machines
                     34: *  without guard digits, but we know of none.
                     35: *
                     36: *  DLASD3 is called from DLASD1.
                     37: *
                     38: *  Arguments
                     39: *  =========
                     40: *
                     41: *  NL     (input) INTEGER
                     42: *         The row dimension of the upper block.  NL >= 1.
                     43: *
                     44: *  NR     (input) INTEGER
                     45: *         The row dimension of the lower block.  NR >= 1.
                     46: *
                     47: *  SQRE   (input) INTEGER
                     48: *         = 0: the lower block is an NR-by-NR square matrix.
                     49: *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
                     50: *
                     51: *         The bidiagonal matrix has N = NL + NR + 1 rows and
                     52: *         M = N + SQRE >= N columns.
                     53: *
                     54: *  K      (input) INTEGER
                     55: *         The size of the secular equation, 1 =< K = < N.
                     56: *
                     57: *  D      (output) DOUBLE PRECISION array, dimension(K)
                     58: *         On exit the square roots of the roots of the secular equation,
                     59: *         in ascending order.
                     60: *
                     61: *  Q      (workspace) DOUBLE PRECISION array,
                     62: *                     dimension at least (LDQ,K).
                     63: *
                     64: *  LDQ    (input) INTEGER
                     65: *         The leading dimension of the array Q.  LDQ >= K.
                     66: *
                     67: *  DSIGMA (input) DOUBLE PRECISION array, dimension(K)
                     68: *         The first K elements of this array contain the old roots
                     69: *         of the deflated updating problem.  These are the poles
                     70: *         of the secular equation.
                     71: *
                     72: *  U      (output) DOUBLE PRECISION array, dimension (LDU, N)
                     73: *         The last N - K columns of this matrix contain the deflated
                     74: *         left singular vectors.
                     75: *
                     76: *  LDU    (input) INTEGER
                     77: *         The leading dimension of the array U.  LDU >= N.
                     78: *
                     79: *  U2     (input/output) DOUBLE PRECISION array, dimension (LDU2, N)
                     80: *         The first K columns of this matrix contain the non-deflated
                     81: *         left singular vectors for the split problem.
                     82: *
                     83: *  LDU2   (input) INTEGER
                     84: *         The leading dimension of the array U2.  LDU2 >= N.
                     85: *
                     86: *  VT     (output) DOUBLE PRECISION array, dimension (LDVT, M)
                     87: *         The last M - K columns of VT' contain the deflated
                     88: *         right singular vectors.
                     89: *
                     90: *  LDVT   (input) INTEGER
                     91: *         The leading dimension of the array VT.  LDVT >= N.
                     92: *
                     93: *  VT2    (input/output) DOUBLE PRECISION array, dimension (LDVT2, N)
                     94: *         The first K columns of VT2' contain the non-deflated
                     95: *         right singular vectors for the split problem.
                     96: *
                     97: *  LDVT2  (input) INTEGER
                     98: *         The leading dimension of the array VT2.  LDVT2 >= N.
                     99: *
                    100: *  IDXC   (input) INTEGER array, dimension ( N )
                    101: *         The permutation used to arrange the columns of U (and rows of
                    102: *         VT) into three groups:  the first group contains non-zero
                    103: *         entries only at and above (or before) NL +1; the second
                    104: *         contains non-zero entries only at and below (or after) NL+2;
                    105: *         and the third is dense. The first column of U and the row of
                    106: *         VT are treated separately, however.
                    107: *
                    108: *         The rows of the singular vectors found by DLASD4
                    109: *         must be likewise permuted before the matrix multiplies can
                    110: *         take place.
                    111: *
                    112: *  CTOT   (input) INTEGER array, dimension ( 4 )
                    113: *         A count of the total number of the various types of columns
                    114: *         in U (or rows in VT), as described in IDXC. The fourth column
                    115: *         type is any column which has been deflated.
                    116: *
                    117: *  Z      (input) DOUBLE PRECISION array, dimension (K)
                    118: *         The first K elements of this array contain the components
                    119: *         of the deflation-adjusted updating row vector.
                    120: *
                    121: *  INFO   (output) INTEGER
                    122: *         = 0:  successful exit.
                    123: *         < 0:  if INFO = -i, the i-th argument had an illegal value.
                    124: *         > 0:  if INFO = 1, an singular value did not converge
                    125: *
                    126: *  Further Details
                    127: *  ===============
                    128: *
                    129: *  Based on contributions by
                    130: *     Ming Gu and Huan Ren, Computer Science Division, University of
                    131: *     California at Berkeley, USA
                    132: *
                    133: *  =====================================================================
                    134: *
                    135: *     .. Parameters ..
                    136:       DOUBLE PRECISION   ONE, ZERO, NEGONE
                    137:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0,
                    138:      $                   NEGONE = -1.0D+0 )
                    139: *     ..
                    140: *     .. Local Scalars ..
                    141:       INTEGER            CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
                    142:       DOUBLE PRECISION   RHO, TEMP
                    143: *     ..
                    144: *     .. External Functions ..
                    145:       DOUBLE PRECISION   DLAMC3, DNRM2
                    146:       EXTERNAL           DLAMC3, DNRM2
                    147: *     ..
                    148: *     .. External Subroutines ..
                    149:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLASCL, DLASD4, XERBLA
                    150: *     ..
                    151: *     .. Intrinsic Functions ..
                    152:       INTRINSIC          ABS, SIGN, SQRT
                    153: *     ..
                    154: *     .. Executable Statements ..
                    155: *
                    156: *     Test the input parameters.
                    157: *
                    158:       INFO = 0
                    159: *
                    160:       IF( NL.LT.1 ) THEN
                    161:          INFO = -1
                    162:       ELSE IF( NR.LT.1 ) THEN
                    163:          INFO = -2
                    164:       ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
                    165:          INFO = -3
                    166:       END IF
                    167: *
                    168:       N = NL + NR + 1
                    169:       M = N + SQRE
                    170:       NLP1 = NL + 1
                    171:       NLP2 = NL + 2
                    172: *
                    173:       IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
                    174:          INFO = -4
                    175:       ELSE IF( LDQ.LT.K ) THEN
                    176:          INFO = -7
                    177:       ELSE IF( LDU.LT.N ) THEN
                    178:          INFO = -10
                    179:       ELSE IF( LDU2.LT.N ) THEN
                    180:          INFO = -12
                    181:       ELSE IF( LDVT.LT.M ) THEN
                    182:          INFO = -14
                    183:       ELSE IF( LDVT2.LT.M ) THEN
                    184:          INFO = -16
                    185:       END IF
                    186:       IF( INFO.NE.0 ) THEN
                    187:          CALL XERBLA( 'DLASD3', -INFO )
                    188:          RETURN
                    189:       END IF
                    190: *
                    191: *     Quick return if possible
                    192: *
                    193:       IF( K.EQ.1 ) THEN
                    194:          D( 1 ) = ABS( Z( 1 ) )
                    195:          CALL DCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
                    196:          IF( Z( 1 ).GT.ZERO ) THEN
                    197:             CALL DCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
                    198:          ELSE
                    199:             DO 10 I = 1, N
                    200:                U( I, 1 ) = -U2( I, 1 )
                    201:    10       CONTINUE
                    202:          END IF
                    203:          RETURN
                    204:       END IF
                    205: *
                    206: *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
                    207: *     be computed with high relative accuracy (barring over/underflow).
                    208: *     This is a problem on machines without a guard digit in
                    209: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
                    210: *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
                    211: *     which on any of these machines zeros out the bottommost
                    212: *     bit of DSIGMA(I) if it is 1; this makes the subsequent
                    213: *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
                    214: *     occurs. On binary machines with a guard digit (almost all
                    215: *     machines) it does not change DSIGMA(I) at all. On hexadecimal
                    216: *     and decimal machines with a guard digit, it slightly
                    217: *     changes the bottommost bits of DSIGMA(I). It does not account
                    218: *     for hexadecimal or decimal machines without guard digits
                    219: *     (we know of none). We use a subroutine call to compute
                    220: *     2*DSIGMA(I) to prevent optimizing compilers from eliminating
                    221: *     this code.
                    222: *
                    223:       DO 20 I = 1, K
                    224:          DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
                    225:    20 CONTINUE
                    226: *
                    227: *     Keep a copy of Z.
                    228: *
                    229:       CALL DCOPY( K, Z, 1, Q, 1 )
                    230: *
                    231: *     Normalize Z.
                    232: *
                    233:       RHO = DNRM2( K, Z, 1 )
                    234:       CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
                    235:       RHO = RHO*RHO
                    236: *
                    237: *     Find the new singular values.
                    238: *
                    239:       DO 30 J = 1, K
                    240:          CALL DLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
                    241:      $                VT( 1, J ), INFO )
                    242: *
                    243: *        If the zero finder fails, the computation is terminated.
                    244: *
                    245:          IF( INFO.NE.0 ) THEN
                    246:             RETURN
                    247:          END IF
                    248:    30 CONTINUE
                    249: *
                    250: *     Compute updated Z.
                    251: *
                    252:       DO 60 I = 1, K
                    253:          Z( I ) = U( I, K )*VT( I, K )
                    254:          DO 40 J = 1, I - 1
                    255:             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
                    256:      $               ( DSIGMA( I )-DSIGMA( J ) ) /
                    257:      $               ( DSIGMA( I )+DSIGMA( J ) ) )
                    258:    40    CONTINUE
                    259:          DO 50 J = I, K - 1
                    260:             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
                    261:      $               ( DSIGMA( I )-DSIGMA( J+1 ) ) /
                    262:      $               ( DSIGMA( I )+DSIGMA( J+1 ) ) )
                    263:    50    CONTINUE
                    264:          Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
                    265:    60 CONTINUE
                    266: *
                    267: *     Compute left singular vectors of the modified diagonal matrix,
                    268: *     and store related information for the right singular vectors.
                    269: *
                    270:       DO 90 I = 1, K
                    271:          VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
                    272:          U( 1, I ) = NEGONE
                    273:          DO 70 J = 2, K
                    274:             VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
                    275:             U( J, I ) = DSIGMA( J )*VT( J, I )
                    276:    70    CONTINUE
                    277:          TEMP = DNRM2( K, U( 1, I ), 1 )
                    278:          Q( 1, I ) = U( 1, I ) / TEMP
                    279:          DO 80 J = 2, K
                    280:             JC = IDXC( J )
                    281:             Q( J, I ) = U( JC, I ) / TEMP
                    282:    80    CONTINUE
                    283:    90 CONTINUE
                    284: *
                    285: *     Update the left singular vector matrix.
                    286: *
                    287:       IF( K.EQ.2 ) THEN
                    288:          CALL DGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
                    289:      $               LDU )
                    290:          GO TO 100
                    291:       END IF
                    292:       IF( CTOT( 1 ).GT.0 ) THEN
                    293:          CALL DGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
                    294:      $               Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
                    295:          IF( CTOT( 3 ).GT.0 ) THEN
                    296:             KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
                    297:             CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
                    298:      $                  LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
                    299:          END IF
                    300:       ELSE IF( CTOT( 3 ).GT.0 ) THEN
                    301:          KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
                    302:          CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
                    303:      $               LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
                    304:       ELSE
                    305:          CALL DLACPY( 'F', NL, K, U2, LDU2, U, LDU )
                    306:       END IF
                    307:       CALL DCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
                    308:       KTEMP = 2 + CTOT( 1 )
                    309:       CTEMP = CTOT( 2 ) + CTOT( 3 )
                    310:       CALL DGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
                    311:      $            Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
                    312: *
                    313: *     Generate the right singular vectors.
                    314: *
                    315:   100 CONTINUE
                    316:       DO 120 I = 1, K
                    317:          TEMP = DNRM2( K, VT( 1, I ), 1 )
                    318:          Q( I, 1 ) = VT( 1, I ) / TEMP
                    319:          DO 110 J = 2, K
                    320:             JC = IDXC( J )
                    321:             Q( I, J ) = VT( JC, I ) / TEMP
                    322:   110    CONTINUE
                    323:   120 CONTINUE
                    324: *
                    325: *     Update the right singular vector matrix.
                    326: *
                    327:       IF( K.EQ.2 ) THEN
                    328:          CALL DGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
                    329:      $               VT, LDVT )
                    330:          RETURN
                    331:       END IF
                    332:       KTEMP = 1 + CTOT( 1 )
                    333:       CALL DGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
                    334:      $            VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
                    335:       KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
                    336:       IF( KTEMP.LE.LDVT2 )
                    337:      $   CALL DGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
                    338:      $               LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
                    339:      $               LDVT )
                    340: *
                    341:       KTEMP = CTOT( 1 ) + 1
                    342:       NRP1 = NR + SQRE
                    343:       IF( KTEMP.GT.1 ) THEN
                    344:          DO 130 I = 1, K
                    345:             Q( I, KTEMP ) = Q( I, 1 )
                    346:   130    CONTINUE
                    347:          DO 140 I = NLP2, M
                    348:             VT2( KTEMP, I ) = VT2( 1, I )
                    349:   140    CONTINUE
                    350:       END IF
                    351:       CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
                    352:       CALL DGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
                    353:      $            VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
                    354: *
                    355:       RETURN
                    356: *
                    357: *     End of DLASD3
                    358: *
                    359:       END

CVSweb interface <joel.bertrand@systella.fr>