Annotation of rpl/lapack/lapack/dlasd3.f, revision 1.10

1.10    ! bertrand    1: *> \brief \b DLASD3
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DLASD3 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd3.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd3.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd3.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
        !            22: *                          LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
        !            23: *                          INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
        !            27: *      $                   SQRE
        !            28: *       ..
        !            29: *       .. Array Arguments ..
        !            30: *       INTEGER            CTOT( * ), IDXC( * )
        !            31: *       DOUBLE PRECISION   D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
        !            32: *      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
        !            33: *      $                   Z( * )
        !            34: *       ..
        !            35: *  
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> DLASD3 finds all the square roots of the roots of the secular
        !            43: *> equation, as defined by the values in D and Z.  It makes the
        !            44: *> appropriate calls to DLASD4 and then updates the singular
        !            45: *> vectors by matrix multiplication.
        !            46: *>
        !            47: *> This code makes very mild assumptions about floating point
        !            48: *> arithmetic. It will work on machines with a guard digit in
        !            49: *> add/subtract, or on those binary machines without guard digits
        !            50: *> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
        !            51: *> It could conceivably fail on hexadecimal or decimal machines
        !            52: *> without guard digits, but we know of none.
        !            53: *>
        !            54: *> DLASD3 is called from DLASD1.
        !            55: *> \endverbatim
        !            56: *
        !            57: *  Arguments:
        !            58: *  ==========
        !            59: *
        !            60: *> \param[in] NL
        !            61: *> \verbatim
        !            62: *>          NL is INTEGER
        !            63: *>         The row dimension of the upper block.  NL >= 1.
        !            64: *> \endverbatim
        !            65: *>
        !            66: *> \param[in] NR
        !            67: *> \verbatim
        !            68: *>          NR is INTEGER
        !            69: *>         The row dimension of the lower block.  NR >= 1.
        !            70: *> \endverbatim
        !            71: *>
        !            72: *> \param[in] SQRE
        !            73: *> \verbatim
        !            74: *>          SQRE is INTEGER
        !            75: *>         = 0: the lower block is an NR-by-NR square matrix.
        !            76: *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
        !            77: *>
        !            78: *>         The bidiagonal matrix has N = NL + NR + 1 rows and
        !            79: *>         M = N + SQRE >= N columns.
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in] K
        !            83: *> \verbatim
        !            84: *>          K is INTEGER
        !            85: *>         The size of the secular equation, 1 =< K = < N.
        !            86: *> \endverbatim
        !            87: *>
        !            88: *> \param[out] D
        !            89: *> \verbatim
        !            90: *>          D is DOUBLE PRECISION array, dimension(K)
        !            91: *>         On exit the square roots of the roots of the secular equation,
        !            92: *>         in ascending order.
        !            93: *> \endverbatim
        !            94: *>
        !            95: *> \param[out] Q
        !            96: *> \verbatim
        !            97: *>          Q is DOUBLE PRECISION array,
        !            98: *>                     dimension at least (LDQ,K).
        !            99: *> \endverbatim
        !           100: *>
        !           101: *> \param[in] LDQ
        !           102: *> \verbatim
        !           103: *>          LDQ is INTEGER
        !           104: *>         The leading dimension of the array Q.  LDQ >= K.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] DSIGMA
        !           108: *> \verbatim
        !           109: *>          DSIGMA is DOUBLE PRECISION array, dimension(K)
        !           110: *>         The first K elements of this array contain the old roots
        !           111: *>         of the deflated updating problem.  These are the poles
        !           112: *>         of the secular equation.
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[out] U
        !           116: *> \verbatim
        !           117: *>          U is DOUBLE PRECISION array, dimension (LDU, N)
        !           118: *>         The last N - K columns of this matrix contain the deflated
        !           119: *>         left singular vectors.
        !           120: *> \endverbatim
        !           121: *>
        !           122: *> \param[in] LDU
        !           123: *> \verbatim
        !           124: *>          LDU is INTEGER
        !           125: *>         The leading dimension of the array U.  LDU >= N.
        !           126: *> \endverbatim
        !           127: *>
        !           128: *> \param[in,out] U2
        !           129: *> \verbatim
        !           130: *>          U2 is DOUBLE PRECISION array, dimension (LDU2, N)
        !           131: *>         The first K columns of this matrix contain the non-deflated
        !           132: *>         left singular vectors for the split problem.
        !           133: *> \endverbatim
        !           134: *>
        !           135: *> \param[in] LDU2
        !           136: *> \verbatim
        !           137: *>          LDU2 is INTEGER
        !           138: *>         The leading dimension of the array U2.  LDU2 >= N.
        !           139: *> \endverbatim
        !           140: *>
        !           141: *> \param[out] VT
        !           142: *> \verbatim
        !           143: *>          VT is DOUBLE PRECISION array, dimension (LDVT, M)
        !           144: *>         The last M - K columns of VT**T contain the deflated
        !           145: *>         right singular vectors.
        !           146: *> \endverbatim
        !           147: *>
        !           148: *> \param[in] LDVT
        !           149: *> \verbatim
        !           150: *>          LDVT is INTEGER
        !           151: *>         The leading dimension of the array VT.  LDVT >= N.
        !           152: *> \endverbatim
        !           153: *>
        !           154: *> \param[in,out] VT2
        !           155: *> \verbatim
        !           156: *>          VT2 is DOUBLE PRECISION array, dimension (LDVT2, N)
        !           157: *>         The first K columns of VT2**T contain the non-deflated
        !           158: *>         right singular vectors for the split problem.
        !           159: *> \endverbatim
        !           160: *>
        !           161: *> \param[in] LDVT2
        !           162: *> \verbatim
        !           163: *>          LDVT2 is INTEGER
        !           164: *>         The leading dimension of the array VT2.  LDVT2 >= N.
        !           165: *> \endverbatim
        !           166: *>
        !           167: *> \param[in] IDXC
        !           168: *> \verbatim
        !           169: *>          IDXC is INTEGER array, dimension ( N )
        !           170: *>         The permutation used to arrange the columns of U (and rows of
        !           171: *>         VT) into three groups:  the first group contains non-zero
        !           172: *>         entries only at and above (or before) NL +1; the second
        !           173: *>         contains non-zero entries only at and below (or after) NL+2;
        !           174: *>         and the third is dense. The first column of U and the row of
        !           175: *>         VT are treated separately, however.
        !           176: *>
        !           177: *>         The rows of the singular vectors found by DLASD4
        !           178: *>         must be likewise permuted before the matrix multiplies can
        !           179: *>         take place.
        !           180: *> \endverbatim
        !           181: *>
        !           182: *> \param[in] CTOT
        !           183: *> \verbatim
        !           184: *>          CTOT is INTEGER array, dimension ( 4 )
        !           185: *>         A count of the total number of the various types of columns
        !           186: *>         in U (or rows in VT), as described in IDXC. The fourth column
        !           187: *>         type is any column which has been deflated.
        !           188: *> \endverbatim
        !           189: *>
        !           190: *> \param[in] Z
        !           191: *> \verbatim
        !           192: *>          Z is DOUBLE PRECISION array, dimension (K)
        !           193: *>         The first K elements of this array contain the components
        !           194: *>         of the deflation-adjusted updating row vector.
        !           195: *> \endverbatim
        !           196: *>
        !           197: *> \param[out] INFO
        !           198: *> \verbatim
        !           199: *>          INFO is INTEGER
        !           200: *>         = 0:  successful exit.
        !           201: *>         < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           202: *>         > 0:  if INFO = 1, a singular value did not converge
        !           203: *> \endverbatim
        !           204: *
        !           205: *  Authors:
        !           206: *  ========
        !           207: *
        !           208: *> \author Univ. of Tennessee 
        !           209: *> \author Univ. of California Berkeley 
        !           210: *> \author Univ. of Colorado Denver 
        !           211: *> \author NAG Ltd. 
        !           212: *
        !           213: *> \date November 2011
        !           214: *
        !           215: *> \ingroup auxOTHERauxiliary
        !           216: *
        !           217: *> \par Contributors:
        !           218: *  ==================
        !           219: *>
        !           220: *>     Ming Gu and Huan Ren, Computer Science Division, University of
        !           221: *>     California at Berkeley, USA
        !           222: *>
        !           223: *  =====================================================================
1.1       bertrand  224:       SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
                    225:      $                   LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
                    226:      $                   INFO )
                    227: *
1.10    ! bertrand  228: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  229: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    230: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10    ! bertrand  231: *     November 2011
1.1       bertrand  232: *
                    233: *     .. Scalar Arguments ..
                    234:       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
                    235:      $                   SQRE
                    236: *     ..
                    237: *     .. Array Arguments ..
                    238:       INTEGER            CTOT( * ), IDXC( * )
                    239:       DOUBLE PRECISION   D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
                    240:      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
                    241:      $                   Z( * )
                    242: *     ..
                    243: *
                    244: *  =====================================================================
                    245: *
                    246: *     .. Parameters ..
                    247:       DOUBLE PRECISION   ONE, ZERO, NEGONE
                    248:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0,
                    249:      $                   NEGONE = -1.0D+0 )
                    250: *     ..
                    251: *     .. Local Scalars ..
                    252:       INTEGER            CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
                    253:       DOUBLE PRECISION   RHO, TEMP
                    254: *     ..
                    255: *     .. External Functions ..
                    256:       DOUBLE PRECISION   DLAMC3, DNRM2
                    257:       EXTERNAL           DLAMC3, DNRM2
                    258: *     ..
                    259: *     .. External Subroutines ..
                    260:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLASCL, DLASD4, XERBLA
                    261: *     ..
                    262: *     .. Intrinsic Functions ..
                    263:       INTRINSIC          ABS, SIGN, SQRT
                    264: *     ..
                    265: *     .. Executable Statements ..
                    266: *
                    267: *     Test the input parameters.
                    268: *
                    269:       INFO = 0
                    270: *
                    271:       IF( NL.LT.1 ) THEN
                    272:          INFO = -1
                    273:       ELSE IF( NR.LT.1 ) THEN
                    274:          INFO = -2
                    275:       ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
                    276:          INFO = -3
                    277:       END IF
                    278: *
                    279:       N = NL + NR + 1
                    280:       M = N + SQRE
                    281:       NLP1 = NL + 1
                    282:       NLP2 = NL + 2
                    283: *
                    284:       IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
                    285:          INFO = -4
                    286:       ELSE IF( LDQ.LT.K ) THEN
                    287:          INFO = -7
                    288:       ELSE IF( LDU.LT.N ) THEN
                    289:          INFO = -10
                    290:       ELSE IF( LDU2.LT.N ) THEN
                    291:          INFO = -12
                    292:       ELSE IF( LDVT.LT.M ) THEN
                    293:          INFO = -14
                    294:       ELSE IF( LDVT2.LT.M ) THEN
                    295:          INFO = -16
                    296:       END IF
                    297:       IF( INFO.NE.0 ) THEN
                    298:          CALL XERBLA( 'DLASD3', -INFO )
                    299:          RETURN
                    300:       END IF
                    301: *
                    302: *     Quick return if possible
                    303: *
                    304:       IF( K.EQ.1 ) THEN
                    305:          D( 1 ) = ABS( Z( 1 ) )
                    306:          CALL DCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
                    307:          IF( Z( 1 ).GT.ZERO ) THEN
                    308:             CALL DCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
                    309:          ELSE
                    310:             DO 10 I = 1, N
                    311:                U( I, 1 ) = -U2( I, 1 )
                    312:    10       CONTINUE
                    313:          END IF
                    314:          RETURN
                    315:       END IF
                    316: *
                    317: *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
                    318: *     be computed with high relative accuracy (barring over/underflow).
                    319: *     This is a problem on machines without a guard digit in
                    320: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
                    321: *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
                    322: *     which on any of these machines zeros out the bottommost
                    323: *     bit of DSIGMA(I) if it is 1; this makes the subsequent
                    324: *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
                    325: *     occurs. On binary machines with a guard digit (almost all
                    326: *     machines) it does not change DSIGMA(I) at all. On hexadecimal
                    327: *     and decimal machines with a guard digit, it slightly
                    328: *     changes the bottommost bits of DSIGMA(I). It does not account
                    329: *     for hexadecimal or decimal machines without guard digits
                    330: *     (we know of none). We use a subroutine call to compute
                    331: *     2*DSIGMA(I) to prevent optimizing compilers from eliminating
                    332: *     this code.
                    333: *
                    334:       DO 20 I = 1, K
                    335:          DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
                    336:    20 CONTINUE
                    337: *
                    338: *     Keep a copy of Z.
                    339: *
                    340:       CALL DCOPY( K, Z, 1, Q, 1 )
                    341: *
                    342: *     Normalize Z.
                    343: *
                    344:       RHO = DNRM2( K, Z, 1 )
                    345:       CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
                    346:       RHO = RHO*RHO
                    347: *
                    348: *     Find the new singular values.
                    349: *
                    350:       DO 30 J = 1, K
                    351:          CALL DLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
                    352:      $                VT( 1, J ), INFO )
                    353: *
                    354: *        If the zero finder fails, the computation is terminated.
                    355: *
                    356:          IF( INFO.NE.0 ) THEN
                    357:             RETURN
                    358:          END IF
                    359:    30 CONTINUE
                    360: *
                    361: *     Compute updated Z.
                    362: *
                    363:       DO 60 I = 1, K
                    364:          Z( I ) = U( I, K )*VT( I, K )
                    365:          DO 40 J = 1, I - 1
                    366:             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
                    367:      $               ( DSIGMA( I )-DSIGMA( J ) ) /
                    368:      $               ( DSIGMA( I )+DSIGMA( J ) ) )
                    369:    40    CONTINUE
                    370:          DO 50 J = I, K - 1
                    371:             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
                    372:      $               ( DSIGMA( I )-DSIGMA( J+1 ) ) /
                    373:      $               ( DSIGMA( I )+DSIGMA( J+1 ) ) )
                    374:    50    CONTINUE
                    375:          Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
                    376:    60 CONTINUE
                    377: *
                    378: *     Compute left singular vectors of the modified diagonal matrix,
                    379: *     and store related information for the right singular vectors.
                    380: *
                    381:       DO 90 I = 1, K
                    382:          VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
                    383:          U( 1, I ) = NEGONE
                    384:          DO 70 J = 2, K
                    385:             VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
                    386:             U( J, I ) = DSIGMA( J )*VT( J, I )
                    387:    70    CONTINUE
                    388:          TEMP = DNRM2( K, U( 1, I ), 1 )
                    389:          Q( 1, I ) = U( 1, I ) / TEMP
                    390:          DO 80 J = 2, K
                    391:             JC = IDXC( J )
                    392:             Q( J, I ) = U( JC, I ) / TEMP
                    393:    80    CONTINUE
                    394:    90 CONTINUE
                    395: *
                    396: *     Update the left singular vector matrix.
                    397: *
                    398:       IF( K.EQ.2 ) THEN
                    399:          CALL DGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
                    400:      $               LDU )
                    401:          GO TO 100
                    402:       END IF
                    403:       IF( CTOT( 1 ).GT.0 ) THEN
                    404:          CALL DGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
                    405:      $               Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
                    406:          IF( CTOT( 3 ).GT.0 ) THEN
                    407:             KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
                    408:             CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
                    409:      $                  LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
                    410:          END IF
                    411:       ELSE IF( CTOT( 3 ).GT.0 ) THEN
                    412:          KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
                    413:          CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
                    414:      $               LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
                    415:       ELSE
                    416:          CALL DLACPY( 'F', NL, K, U2, LDU2, U, LDU )
                    417:       END IF
                    418:       CALL DCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
                    419:       KTEMP = 2 + CTOT( 1 )
                    420:       CTEMP = CTOT( 2 ) + CTOT( 3 )
                    421:       CALL DGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
                    422:      $            Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
                    423: *
                    424: *     Generate the right singular vectors.
                    425: *
                    426:   100 CONTINUE
                    427:       DO 120 I = 1, K
                    428:          TEMP = DNRM2( K, VT( 1, I ), 1 )
                    429:          Q( I, 1 ) = VT( 1, I ) / TEMP
                    430:          DO 110 J = 2, K
                    431:             JC = IDXC( J )
                    432:             Q( I, J ) = VT( JC, I ) / TEMP
                    433:   110    CONTINUE
                    434:   120 CONTINUE
                    435: *
                    436: *     Update the right singular vector matrix.
                    437: *
                    438:       IF( K.EQ.2 ) THEN
                    439:          CALL DGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
                    440:      $               VT, LDVT )
                    441:          RETURN
                    442:       END IF
                    443:       KTEMP = 1 + CTOT( 1 )
                    444:       CALL DGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
                    445:      $            VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
                    446:       KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
                    447:       IF( KTEMP.LE.LDVT2 )
                    448:      $   CALL DGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
                    449:      $               LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
                    450:      $               LDVT )
                    451: *
                    452:       KTEMP = CTOT( 1 ) + 1
                    453:       NRP1 = NR + SQRE
                    454:       IF( KTEMP.GT.1 ) THEN
                    455:          DO 130 I = 1, K
                    456:             Q( I, KTEMP ) = Q( I, 1 )
                    457:   130    CONTINUE
                    458:          DO 140 I = NLP2, M
                    459:             VT2( KTEMP, I ) = VT2( 1, I )
                    460:   140    CONTINUE
                    461:       END IF
                    462:       CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
                    463:       CALL DGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
                    464:      $            VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
                    465: *
                    466:       RETURN
                    467: *
                    468: *     End of DLASD3
                    469: *
                    470:       END

CVSweb interface <joel.bertrand@systella.fr>