Annotation of rpl/lapack/lapack/dlasd3.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
        !             2:      $                   LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
        !             3:      $                   INFO )
        !             4: *
        !             5: *  -- LAPACK auxiliary routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
        !            12:      $                   SQRE
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       INTEGER            CTOT( * ), IDXC( * )
        !            16:       DOUBLE PRECISION   D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
        !            17:      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
        !            18:      $                   Z( * )
        !            19: *     ..
        !            20: *
        !            21: *  Purpose
        !            22: *  =======
        !            23: *
        !            24: *  DLASD3 finds all the square roots of the roots of the secular
        !            25: *  equation, as defined by the values in D and Z.  It makes the
        !            26: *  appropriate calls to DLASD4 and then updates the singular
        !            27: *  vectors by matrix multiplication.
        !            28: *
        !            29: *  This code makes very mild assumptions about floating point
        !            30: *  arithmetic. It will work on machines with a guard digit in
        !            31: *  add/subtract, or on those binary machines without guard digits
        !            32: *  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
        !            33: *  It could conceivably fail on hexadecimal or decimal machines
        !            34: *  without guard digits, but we know of none.
        !            35: *
        !            36: *  DLASD3 is called from DLASD1.
        !            37: *
        !            38: *  Arguments
        !            39: *  =========
        !            40: *
        !            41: *  NL     (input) INTEGER
        !            42: *         The row dimension of the upper block.  NL >= 1.
        !            43: *
        !            44: *  NR     (input) INTEGER
        !            45: *         The row dimension of the lower block.  NR >= 1.
        !            46: *
        !            47: *  SQRE   (input) INTEGER
        !            48: *         = 0: the lower block is an NR-by-NR square matrix.
        !            49: *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
        !            50: *
        !            51: *         The bidiagonal matrix has N = NL + NR + 1 rows and
        !            52: *         M = N + SQRE >= N columns.
        !            53: *
        !            54: *  K      (input) INTEGER
        !            55: *         The size of the secular equation, 1 =< K = < N.
        !            56: *
        !            57: *  D      (output) DOUBLE PRECISION array, dimension(K)
        !            58: *         On exit the square roots of the roots of the secular equation,
        !            59: *         in ascending order.
        !            60: *
        !            61: *  Q      (workspace) DOUBLE PRECISION array,
        !            62: *                     dimension at least (LDQ,K).
        !            63: *
        !            64: *  LDQ    (input) INTEGER
        !            65: *         The leading dimension of the array Q.  LDQ >= K.
        !            66: *
        !            67: *  DSIGMA (input) DOUBLE PRECISION array, dimension(K)
        !            68: *         The first K elements of this array contain the old roots
        !            69: *         of the deflated updating problem.  These are the poles
        !            70: *         of the secular equation.
        !            71: *
        !            72: *  U      (output) DOUBLE PRECISION array, dimension (LDU, N)
        !            73: *         The last N - K columns of this matrix contain the deflated
        !            74: *         left singular vectors.
        !            75: *
        !            76: *  LDU    (input) INTEGER
        !            77: *         The leading dimension of the array U.  LDU >= N.
        !            78: *
        !            79: *  U2     (input/output) DOUBLE PRECISION array, dimension (LDU2, N)
        !            80: *         The first K columns of this matrix contain the non-deflated
        !            81: *         left singular vectors for the split problem.
        !            82: *
        !            83: *  LDU2   (input) INTEGER
        !            84: *         The leading dimension of the array U2.  LDU2 >= N.
        !            85: *
        !            86: *  VT     (output) DOUBLE PRECISION array, dimension (LDVT, M)
        !            87: *         The last M - K columns of VT' contain the deflated
        !            88: *         right singular vectors.
        !            89: *
        !            90: *  LDVT   (input) INTEGER
        !            91: *         The leading dimension of the array VT.  LDVT >= N.
        !            92: *
        !            93: *  VT2    (input/output) DOUBLE PRECISION array, dimension (LDVT2, N)
        !            94: *         The first K columns of VT2' contain the non-deflated
        !            95: *         right singular vectors for the split problem.
        !            96: *
        !            97: *  LDVT2  (input) INTEGER
        !            98: *         The leading dimension of the array VT2.  LDVT2 >= N.
        !            99: *
        !           100: *  IDXC   (input) INTEGER array, dimension ( N )
        !           101: *         The permutation used to arrange the columns of U (and rows of
        !           102: *         VT) into three groups:  the first group contains non-zero
        !           103: *         entries only at and above (or before) NL +1; the second
        !           104: *         contains non-zero entries only at and below (or after) NL+2;
        !           105: *         and the third is dense. The first column of U and the row of
        !           106: *         VT are treated separately, however.
        !           107: *
        !           108: *         The rows of the singular vectors found by DLASD4
        !           109: *         must be likewise permuted before the matrix multiplies can
        !           110: *         take place.
        !           111: *
        !           112: *  CTOT   (input) INTEGER array, dimension ( 4 )
        !           113: *         A count of the total number of the various types of columns
        !           114: *         in U (or rows in VT), as described in IDXC. The fourth column
        !           115: *         type is any column which has been deflated.
        !           116: *
        !           117: *  Z      (input) DOUBLE PRECISION array, dimension (K)
        !           118: *         The first K elements of this array contain the components
        !           119: *         of the deflation-adjusted updating row vector.
        !           120: *
        !           121: *  INFO   (output) INTEGER
        !           122: *         = 0:  successful exit.
        !           123: *         < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           124: *         > 0:  if INFO = 1, an singular value did not converge
        !           125: *
        !           126: *  Further Details
        !           127: *  ===============
        !           128: *
        !           129: *  Based on contributions by
        !           130: *     Ming Gu and Huan Ren, Computer Science Division, University of
        !           131: *     California at Berkeley, USA
        !           132: *
        !           133: *  =====================================================================
        !           134: *
        !           135: *     .. Parameters ..
        !           136:       DOUBLE PRECISION   ONE, ZERO, NEGONE
        !           137:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0,
        !           138:      $                   NEGONE = -1.0D+0 )
        !           139: *     ..
        !           140: *     .. Local Scalars ..
        !           141:       INTEGER            CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
        !           142:       DOUBLE PRECISION   RHO, TEMP
        !           143: *     ..
        !           144: *     .. External Functions ..
        !           145:       DOUBLE PRECISION   DLAMC3, DNRM2
        !           146:       EXTERNAL           DLAMC3, DNRM2
        !           147: *     ..
        !           148: *     .. External Subroutines ..
        !           149:       EXTERNAL           DCOPY, DGEMM, DLACPY, DLASCL, DLASD4, XERBLA
        !           150: *     ..
        !           151: *     .. Intrinsic Functions ..
        !           152:       INTRINSIC          ABS, SIGN, SQRT
        !           153: *     ..
        !           154: *     .. Executable Statements ..
        !           155: *
        !           156: *     Test the input parameters.
        !           157: *
        !           158:       INFO = 0
        !           159: *
        !           160:       IF( NL.LT.1 ) THEN
        !           161:          INFO = -1
        !           162:       ELSE IF( NR.LT.1 ) THEN
        !           163:          INFO = -2
        !           164:       ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
        !           165:          INFO = -3
        !           166:       END IF
        !           167: *
        !           168:       N = NL + NR + 1
        !           169:       M = N + SQRE
        !           170:       NLP1 = NL + 1
        !           171:       NLP2 = NL + 2
        !           172: *
        !           173:       IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
        !           174:          INFO = -4
        !           175:       ELSE IF( LDQ.LT.K ) THEN
        !           176:          INFO = -7
        !           177:       ELSE IF( LDU.LT.N ) THEN
        !           178:          INFO = -10
        !           179:       ELSE IF( LDU2.LT.N ) THEN
        !           180:          INFO = -12
        !           181:       ELSE IF( LDVT.LT.M ) THEN
        !           182:          INFO = -14
        !           183:       ELSE IF( LDVT2.LT.M ) THEN
        !           184:          INFO = -16
        !           185:       END IF
        !           186:       IF( INFO.NE.0 ) THEN
        !           187:          CALL XERBLA( 'DLASD3', -INFO )
        !           188:          RETURN
        !           189:       END IF
        !           190: *
        !           191: *     Quick return if possible
        !           192: *
        !           193:       IF( K.EQ.1 ) THEN
        !           194:          D( 1 ) = ABS( Z( 1 ) )
        !           195:          CALL DCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
        !           196:          IF( Z( 1 ).GT.ZERO ) THEN
        !           197:             CALL DCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
        !           198:          ELSE
        !           199:             DO 10 I = 1, N
        !           200:                U( I, 1 ) = -U2( I, 1 )
        !           201:    10       CONTINUE
        !           202:          END IF
        !           203:          RETURN
        !           204:       END IF
        !           205: *
        !           206: *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
        !           207: *     be computed with high relative accuracy (barring over/underflow).
        !           208: *     This is a problem on machines without a guard digit in
        !           209: *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
        !           210: *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
        !           211: *     which on any of these machines zeros out the bottommost
        !           212: *     bit of DSIGMA(I) if it is 1; this makes the subsequent
        !           213: *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
        !           214: *     occurs. On binary machines with a guard digit (almost all
        !           215: *     machines) it does not change DSIGMA(I) at all. On hexadecimal
        !           216: *     and decimal machines with a guard digit, it slightly
        !           217: *     changes the bottommost bits of DSIGMA(I). It does not account
        !           218: *     for hexadecimal or decimal machines without guard digits
        !           219: *     (we know of none). We use a subroutine call to compute
        !           220: *     2*DSIGMA(I) to prevent optimizing compilers from eliminating
        !           221: *     this code.
        !           222: *
        !           223:       DO 20 I = 1, K
        !           224:          DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
        !           225:    20 CONTINUE
        !           226: *
        !           227: *     Keep a copy of Z.
        !           228: *
        !           229:       CALL DCOPY( K, Z, 1, Q, 1 )
        !           230: *
        !           231: *     Normalize Z.
        !           232: *
        !           233:       RHO = DNRM2( K, Z, 1 )
        !           234:       CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
        !           235:       RHO = RHO*RHO
        !           236: *
        !           237: *     Find the new singular values.
        !           238: *
        !           239:       DO 30 J = 1, K
        !           240:          CALL DLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
        !           241:      $                VT( 1, J ), INFO )
        !           242: *
        !           243: *        If the zero finder fails, the computation is terminated.
        !           244: *
        !           245:          IF( INFO.NE.0 ) THEN
        !           246:             RETURN
        !           247:          END IF
        !           248:    30 CONTINUE
        !           249: *
        !           250: *     Compute updated Z.
        !           251: *
        !           252:       DO 60 I = 1, K
        !           253:          Z( I ) = U( I, K )*VT( I, K )
        !           254:          DO 40 J = 1, I - 1
        !           255:             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
        !           256:      $               ( DSIGMA( I )-DSIGMA( J ) ) /
        !           257:      $               ( DSIGMA( I )+DSIGMA( J ) ) )
        !           258:    40    CONTINUE
        !           259:          DO 50 J = I, K - 1
        !           260:             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
        !           261:      $               ( DSIGMA( I )-DSIGMA( J+1 ) ) /
        !           262:      $               ( DSIGMA( I )+DSIGMA( J+1 ) ) )
        !           263:    50    CONTINUE
        !           264:          Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
        !           265:    60 CONTINUE
        !           266: *
        !           267: *     Compute left singular vectors of the modified diagonal matrix,
        !           268: *     and store related information for the right singular vectors.
        !           269: *
        !           270:       DO 90 I = 1, K
        !           271:          VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
        !           272:          U( 1, I ) = NEGONE
        !           273:          DO 70 J = 2, K
        !           274:             VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
        !           275:             U( J, I ) = DSIGMA( J )*VT( J, I )
        !           276:    70    CONTINUE
        !           277:          TEMP = DNRM2( K, U( 1, I ), 1 )
        !           278:          Q( 1, I ) = U( 1, I ) / TEMP
        !           279:          DO 80 J = 2, K
        !           280:             JC = IDXC( J )
        !           281:             Q( J, I ) = U( JC, I ) / TEMP
        !           282:    80    CONTINUE
        !           283:    90 CONTINUE
        !           284: *
        !           285: *     Update the left singular vector matrix.
        !           286: *
        !           287:       IF( K.EQ.2 ) THEN
        !           288:          CALL DGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
        !           289:      $               LDU )
        !           290:          GO TO 100
        !           291:       END IF
        !           292:       IF( CTOT( 1 ).GT.0 ) THEN
        !           293:          CALL DGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
        !           294:      $               Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
        !           295:          IF( CTOT( 3 ).GT.0 ) THEN
        !           296:             KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
        !           297:             CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
        !           298:      $                  LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
        !           299:          END IF
        !           300:       ELSE IF( CTOT( 3 ).GT.0 ) THEN
        !           301:          KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
        !           302:          CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
        !           303:      $               LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
        !           304:       ELSE
        !           305:          CALL DLACPY( 'F', NL, K, U2, LDU2, U, LDU )
        !           306:       END IF
        !           307:       CALL DCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
        !           308:       KTEMP = 2 + CTOT( 1 )
        !           309:       CTEMP = CTOT( 2 ) + CTOT( 3 )
        !           310:       CALL DGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
        !           311:      $            Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
        !           312: *
        !           313: *     Generate the right singular vectors.
        !           314: *
        !           315:   100 CONTINUE
        !           316:       DO 120 I = 1, K
        !           317:          TEMP = DNRM2( K, VT( 1, I ), 1 )
        !           318:          Q( I, 1 ) = VT( 1, I ) / TEMP
        !           319:          DO 110 J = 2, K
        !           320:             JC = IDXC( J )
        !           321:             Q( I, J ) = VT( JC, I ) / TEMP
        !           322:   110    CONTINUE
        !           323:   120 CONTINUE
        !           324: *
        !           325: *     Update the right singular vector matrix.
        !           326: *
        !           327:       IF( K.EQ.2 ) THEN
        !           328:          CALL DGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
        !           329:      $               VT, LDVT )
        !           330:          RETURN
        !           331:       END IF
        !           332:       KTEMP = 1 + CTOT( 1 )
        !           333:       CALL DGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
        !           334:      $            VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
        !           335:       KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
        !           336:       IF( KTEMP.LE.LDVT2 )
        !           337:      $   CALL DGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
        !           338:      $               LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
        !           339:      $               LDVT )
        !           340: *
        !           341:       KTEMP = CTOT( 1 ) + 1
        !           342:       NRP1 = NR + SQRE
        !           343:       IF( KTEMP.GT.1 ) THEN
        !           344:          DO 130 I = 1, K
        !           345:             Q( I, KTEMP ) = Q( I, 1 )
        !           346:   130    CONTINUE
        !           347:          DO 140 I = NLP2, M
        !           348:             VT2( KTEMP, I ) = VT2( 1, I )
        !           349:   140    CONTINUE
        !           350:       END IF
        !           351:       CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
        !           352:       CALL DGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
        !           353:      $            VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
        !           354: *
        !           355:       RETURN
        !           356: *
        !           357: *     End of DLASD3
        !           358: *
        !           359:       END

CVSweb interface <joel.bertrand@systella.fr>