File:  [local] / rpl / lapack / lapack / dlasd2.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:33 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT,
    2:      $                   LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX,
    3:      $                   IDXC, IDXQ, COLTYP, INFO )
    4: *
    5: *  -- LAPACK auxiliary routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       INTEGER            INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE
   12:       DOUBLE PRECISION   ALPHA, BETA
   13: *     ..
   14: *     .. Array Arguments ..
   15:       INTEGER            COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ),
   16:      $                   IDXQ( * )
   17:       DOUBLE PRECISION   D( * ), DSIGMA( * ), U( LDU, * ),
   18:      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
   19:      $                   Z( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DLASD2 merges the two sets of singular values together into a single
   26: *  sorted set.  Then it tries to deflate the size of the problem.
   27: *  There are two ways in which deflation can occur:  when two or more
   28: *  singular values are close together or if there is a tiny entry in the
   29: *  Z vector.  For each such occurrence the order of the related secular
   30: *  equation problem is reduced by one.
   31: *
   32: *  DLASD2 is called from DLASD1.
   33: *
   34: *  Arguments
   35: *  =========
   36: *
   37: *  NL     (input) INTEGER
   38: *         The row dimension of the upper block.  NL >= 1.
   39: *
   40: *  NR     (input) INTEGER
   41: *         The row dimension of the lower block.  NR >= 1.
   42: *
   43: *  SQRE   (input) INTEGER
   44: *         = 0: the lower block is an NR-by-NR square matrix.
   45: *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
   46: *
   47: *         The bidiagonal matrix has N = NL + NR + 1 rows and
   48: *         M = N + SQRE >= N columns.
   49: *
   50: *  K      (output) INTEGER
   51: *         Contains the dimension of the non-deflated matrix,
   52: *         This is the order of the related secular equation. 1 <= K <=N.
   53: *
   54: *  D      (input/output) DOUBLE PRECISION array, dimension(N)
   55: *         On entry D contains the singular values of the two submatrices
   56: *         to be combined.  On exit D contains the trailing (N-K) updated
   57: *         singular values (those which were deflated) sorted into
   58: *         increasing order.
   59: *
   60: *  Z      (output) DOUBLE PRECISION array, dimension(N)
   61: *         On exit Z contains the updating row vector in the secular
   62: *         equation.
   63: *
   64: *  ALPHA  (input) DOUBLE PRECISION
   65: *         Contains the diagonal element associated with the added row.
   66: *
   67: *  BETA   (input) DOUBLE PRECISION
   68: *         Contains the off-diagonal element associated with the added
   69: *         row.
   70: *
   71: *  U      (input/output) DOUBLE PRECISION array, dimension(LDU,N)
   72: *         On entry U contains the left singular vectors of two
   73: *         submatrices in the two square blocks with corners at (1,1),
   74: *         (NL, NL), and (NL+2, NL+2), (N,N).
   75: *         On exit U contains the trailing (N-K) updated left singular
   76: *         vectors (those which were deflated) in its last N-K columns.
   77: *
   78: *  LDU    (input) INTEGER
   79: *         The leading dimension of the array U.  LDU >= N.
   80: *
   81: *  VT     (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
   82: *         On entry VT' contains the right singular vectors of two
   83: *         submatrices in the two square blocks with corners at (1,1),
   84: *         (NL+1, NL+1), and (NL+2, NL+2), (M,M).
   85: *         On exit VT' contains the trailing (N-K) updated right singular
   86: *         vectors (those which were deflated) in its last N-K columns.
   87: *         In case SQRE =1, the last row of VT spans the right null
   88: *         space.
   89: *
   90: *  LDVT   (input) INTEGER
   91: *         The leading dimension of the array VT.  LDVT >= M.
   92: *
   93: *  DSIGMA (output) DOUBLE PRECISION array, dimension (N)
   94: *         Contains a copy of the diagonal elements (K-1 singular values
   95: *         and one zero) in the secular equation.
   96: *
   97: *  U2     (output) DOUBLE PRECISION array, dimension(LDU2,N)
   98: *         Contains a copy of the first K-1 left singular vectors which
   99: *         will be used by DLASD3 in a matrix multiply (DGEMM) to solve
  100: *         for the new left singular vectors. U2 is arranged into four
  101: *         blocks. The first block contains a column with 1 at NL+1 and
  102: *         zero everywhere else; the second block contains non-zero
  103: *         entries only at and above NL; the third contains non-zero
  104: *         entries only below NL+1; and the fourth is dense.
  105: *
  106: *  LDU2   (input) INTEGER
  107: *         The leading dimension of the array U2.  LDU2 >= N.
  108: *
  109: *  VT2    (output) DOUBLE PRECISION array, dimension(LDVT2,N)
  110: *         VT2' contains a copy of the first K right singular vectors
  111: *         which will be used by DLASD3 in a matrix multiply (DGEMM) to
  112: *         solve for the new right singular vectors. VT2 is arranged into
  113: *         three blocks. The first block contains a row that corresponds
  114: *         to the special 0 diagonal element in SIGMA; the second block
  115: *         contains non-zeros only at and before NL +1; the third block
  116: *         contains non-zeros only at and after  NL +2.
  117: *
  118: *  LDVT2  (input) INTEGER
  119: *         The leading dimension of the array VT2.  LDVT2 >= M.
  120: *
  121: *  IDXP   (workspace) INTEGER array dimension(N)
  122: *         This will contain the permutation used to place deflated
  123: *         values of D at the end of the array. On output IDXP(2:K)
  124: *         points to the nondeflated D-values and IDXP(K+1:N)
  125: *         points to the deflated singular values.
  126: *
  127: *  IDX    (workspace) INTEGER array dimension(N)
  128: *         This will contain the permutation used to sort the contents of
  129: *         D into ascending order.
  130: *
  131: *  IDXC   (output) INTEGER array dimension(N)
  132: *         This will contain the permutation used to arrange the columns
  133: *         of the deflated U matrix into three groups:  the first group
  134: *         contains non-zero entries only at and above NL, the second
  135: *         contains non-zero entries only below NL+2, and the third is
  136: *         dense.
  137: *
  138: *  IDXQ   (input/output) INTEGER array dimension(N)
  139: *         This contains the permutation which separately sorts the two
  140: *         sub-problems in D into ascending order.  Note that entries in
  141: *         the first hlaf of this permutation must first be moved one
  142: *         position backward; and entries in the second half
  143: *         must first have NL+1 added to their values.
  144: *
  145: *  COLTYP (workspace/output) INTEGER array dimension(N)
  146: *         As workspace, this will contain a label which will indicate
  147: *         which of the following types a column in the U2 matrix or a
  148: *         row in the VT2 matrix is:
  149: *         1 : non-zero in the upper half only
  150: *         2 : non-zero in the lower half only
  151: *         3 : dense
  152: *         4 : deflated
  153: *
  154: *         On exit, it is an array of dimension 4, with COLTYP(I) being
  155: *         the dimension of the I-th type columns.
  156: *
  157: *  INFO   (output) INTEGER
  158: *          = 0:  successful exit.
  159: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  160: *
  161: *  Further Details
  162: *  ===============
  163: *
  164: *  Based on contributions by
  165: *     Ming Gu and Huan Ren, Computer Science Division, University of
  166: *     California at Berkeley, USA
  167: *
  168: *  =====================================================================
  169: *
  170: *     .. Parameters ..
  171:       DOUBLE PRECISION   ZERO, ONE, TWO, EIGHT
  172:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
  173:      $                   EIGHT = 8.0D+0 )
  174: *     ..
  175: *     .. Local Arrays ..
  176:       INTEGER            CTOT( 4 ), PSM( 4 )
  177: *     ..
  178: *     .. Local Scalars ..
  179:       INTEGER            CT, I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M,
  180:      $                   N, NLP1, NLP2
  181:       DOUBLE PRECISION   C, EPS, HLFTOL, S, TAU, TOL, Z1
  182: *     ..
  183: *     .. External Functions ..
  184:       DOUBLE PRECISION   DLAMCH, DLAPY2
  185:       EXTERNAL           DLAMCH, DLAPY2
  186: *     ..
  187: *     .. External Subroutines ..
  188:       EXTERNAL           DCOPY, DLACPY, DLAMRG, DLASET, DROT, XERBLA
  189: *     ..
  190: *     .. Intrinsic Functions ..
  191:       INTRINSIC          ABS, MAX
  192: *     ..
  193: *     .. Executable Statements ..
  194: *
  195: *     Test the input parameters.
  196: *
  197:       INFO = 0
  198: *
  199:       IF( NL.LT.1 ) THEN
  200:          INFO = -1
  201:       ELSE IF( NR.LT.1 ) THEN
  202:          INFO = -2
  203:       ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
  204:          INFO = -3
  205:       END IF
  206: *
  207:       N = NL + NR + 1
  208:       M = N + SQRE
  209: *
  210:       IF( LDU.LT.N ) THEN
  211:          INFO = -10
  212:       ELSE IF( LDVT.LT.M ) THEN
  213:          INFO = -12
  214:       ELSE IF( LDU2.LT.N ) THEN
  215:          INFO = -15
  216:       ELSE IF( LDVT2.LT.M ) THEN
  217:          INFO = -17
  218:       END IF
  219:       IF( INFO.NE.0 ) THEN
  220:          CALL XERBLA( 'DLASD2', -INFO )
  221:          RETURN
  222:       END IF
  223: *
  224:       NLP1 = NL + 1
  225:       NLP2 = NL + 2
  226: *
  227: *     Generate the first part of the vector Z; and move the singular
  228: *     values in the first part of D one position backward.
  229: *
  230:       Z1 = ALPHA*VT( NLP1, NLP1 )
  231:       Z( 1 ) = Z1
  232:       DO 10 I = NL, 1, -1
  233:          Z( I+1 ) = ALPHA*VT( I, NLP1 )
  234:          D( I+1 ) = D( I )
  235:          IDXQ( I+1 ) = IDXQ( I ) + 1
  236:    10 CONTINUE
  237: *
  238: *     Generate the second part of the vector Z.
  239: *
  240:       DO 20 I = NLP2, M
  241:          Z( I ) = BETA*VT( I, NLP2 )
  242:    20 CONTINUE
  243: *
  244: *     Initialize some reference arrays.
  245: *
  246:       DO 30 I = 2, NLP1
  247:          COLTYP( I ) = 1
  248:    30 CONTINUE
  249:       DO 40 I = NLP2, N
  250:          COLTYP( I ) = 2
  251:    40 CONTINUE
  252: *
  253: *     Sort the singular values into increasing order
  254: *
  255:       DO 50 I = NLP2, N
  256:          IDXQ( I ) = IDXQ( I ) + NLP1
  257:    50 CONTINUE
  258: *
  259: *     DSIGMA, IDXC, IDXC, and the first column of U2
  260: *     are used as storage space.
  261: *
  262:       DO 60 I = 2, N
  263:          DSIGMA( I ) = D( IDXQ( I ) )
  264:          U2( I, 1 ) = Z( IDXQ( I ) )
  265:          IDXC( I ) = COLTYP( IDXQ( I ) )
  266:    60 CONTINUE
  267: *
  268:       CALL DLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
  269: *
  270:       DO 70 I = 2, N
  271:          IDXI = 1 + IDX( I )
  272:          D( I ) = DSIGMA( IDXI )
  273:          Z( I ) = U2( IDXI, 1 )
  274:          COLTYP( I ) = IDXC( IDXI )
  275:    70 CONTINUE
  276: *
  277: *     Calculate the allowable deflation tolerance
  278: *
  279:       EPS = DLAMCH( 'Epsilon' )
  280:       TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
  281:       TOL = EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
  282: *
  283: *     There are 2 kinds of deflation -- first a value in the z-vector
  284: *     is small, second two (or more) singular values are very close
  285: *     together (their difference is small).
  286: *
  287: *     If the value in the z-vector is small, we simply permute the
  288: *     array so that the corresponding singular value is moved to the
  289: *     end.
  290: *
  291: *     If two values in the D-vector are close, we perform a two-sided
  292: *     rotation designed to make one of the corresponding z-vector
  293: *     entries zero, and then permute the array so that the deflated
  294: *     singular value is moved to the end.
  295: *
  296: *     If there are multiple singular values then the problem deflates.
  297: *     Here the number of equal singular values are found.  As each equal
  298: *     singular value is found, an elementary reflector is computed to
  299: *     rotate the corresponding singular subspace so that the
  300: *     corresponding components of Z are zero in this new basis.
  301: *
  302:       K = 1
  303:       K2 = N + 1
  304:       DO 80 J = 2, N
  305:          IF( ABS( Z( J ) ).LE.TOL ) THEN
  306: *
  307: *           Deflate due to small z component.
  308: *
  309:             K2 = K2 - 1
  310:             IDXP( K2 ) = J
  311:             COLTYP( J ) = 4
  312:             IF( J.EQ.N )
  313:      $         GO TO 120
  314:          ELSE
  315:             JPREV = J
  316:             GO TO 90
  317:          END IF
  318:    80 CONTINUE
  319:    90 CONTINUE
  320:       J = JPREV
  321:   100 CONTINUE
  322:       J = J + 1
  323:       IF( J.GT.N )
  324:      $   GO TO 110
  325:       IF( ABS( Z( J ) ).LE.TOL ) THEN
  326: *
  327: *        Deflate due to small z component.
  328: *
  329:          K2 = K2 - 1
  330:          IDXP( K2 ) = J
  331:          COLTYP( J ) = 4
  332:       ELSE
  333: *
  334: *        Check if singular values are close enough to allow deflation.
  335: *
  336:          IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
  337: *
  338: *           Deflation is possible.
  339: *
  340:             S = Z( JPREV )
  341:             C = Z( J )
  342: *
  343: *           Find sqrt(a**2+b**2) without overflow or
  344: *           destructive underflow.
  345: *
  346:             TAU = DLAPY2( C, S )
  347:             C = C / TAU
  348:             S = -S / TAU
  349:             Z( J ) = TAU
  350:             Z( JPREV ) = ZERO
  351: *
  352: *           Apply back the Givens rotation to the left and right
  353: *           singular vector matrices.
  354: *
  355:             IDXJP = IDXQ( IDX( JPREV )+1 )
  356:             IDXJ = IDXQ( IDX( J )+1 )
  357:             IF( IDXJP.LE.NLP1 ) THEN
  358:                IDXJP = IDXJP - 1
  359:             END IF
  360:             IF( IDXJ.LE.NLP1 ) THEN
  361:                IDXJ = IDXJ - 1
  362:             END IF
  363:             CALL DROT( N, U( 1, IDXJP ), 1, U( 1, IDXJ ), 1, C, S )
  364:             CALL DROT( M, VT( IDXJP, 1 ), LDVT, VT( IDXJ, 1 ), LDVT, C,
  365:      $                 S )
  366:             IF( COLTYP( J ).NE.COLTYP( JPREV ) ) THEN
  367:                COLTYP( J ) = 3
  368:             END IF
  369:             COLTYP( JPREV ) = 4
  370:             K2 = K2 - 1
  371:             IDXP( K2 ) = JPREV
  372:             JPREV = J
  373:          ELSE
  374:             K = K + 1
  375:             U2( K, 1 ) = Z( JPREV )
  376:             DSIGMA( K ) = D( JPREV )
  377:             IDXP( K ) = JPREV
  378:             JPREV = J
  379:          END IF
  380:       END IF
  381:       GO TO 100
  382:   110 CONTINUE
  383: *
  384: *     Record the last singular value.
  385: *
  386:       K = K + 1
  387:       U2( K, 1 ) = Z( JPREV )
  388:       DSIGMA( K ) = D( JPREV )
  389:       IDXP( K ) = JPREV
  390: *
  391:   120 CONTINUE
  392: *
  393: *     Count up the total number of the various types of columns, then
  394: *     form a permutation which positions the four column types into
  395: *     four groups of uniform structure (although one or more of these
  396: *     groups may be empty).
  397: *
  398:       DO 130 J = 1, 4
  399:          CTOT( J ) = 0
  400:   130 CONTINUE
  401:       DO 140 J = 2, N
  402:          CT = COLTYP( J )
  403:          CTOT( CT ) = CTOT( CT ) + 1
  404:   140 CONTINUE
  405: *
  406: *     PSM(*) = Position in SubMatrix (of types 1 through 4)
  407: *
  408:       PSM( 1 ) = 2
  409:       PSM( 2 ) = 2 + CTOT( 1 )
  410:       PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
  411:       PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
  412: *
  413: *     Fill out the IDXC array so that the permutation which it induces
  414: *     will place all type-1 columns first, all type-2 columns next,
  415: *     then all type-3's, and finally all type-4's, starting from the
  416: *     second column. This applies similarly to the rows of VT.
  417: *
  418:       DO 150 J = 2, N
  419:          JP = IDXP( J )
  420:          CT = COLTYP( JP )
  421:          IDXC( PSM( CT ) ) = J
  422:          PSM( CT ) = PSM( CT ) + 1
  423:   150 CONTINUE
  424: *
  425: *     Sort the singular values and corresponding singular vectors into
  426: *     DSIGMA, U2, and VT2 respectively.  The singular values/vectors
  427: *     which were not deflated go into the first K slots of DSIGMA, U2,
  428: *     and VT2 respectively, while those which were deflated go into the
  429: *     last N - K slots, except that the first column/row will be treated
  430: *     separately.
  431: *
  432:       DO 160 J = 2, N
  433:          JP = IDXP( J )
  434:          DSIGMA( J ) = D( JP )
  435:          IDXJ = IDXQ( IDX( IDXP( IDXC( J ) ) )+1 )
  436:          IF( IDXJ.LE.NLP1 ) THEN
  437:             IDXJ = IDXJ - 1
  438:          END IF
  439:          CALL DCOPY( N, U( 1, IDXJ ), 1, U2( 1, J ), 1 )
  440:          CALL DCOPY( M, VT( IDXJ, 1 ), LDVT, VT2( J, 1 ), LDVT2 )
  441:   160 CONTINUE
  442: *
  443: *     Determine DSIGMA(1), DSIGMA(2) and Z(1)
  444: *
  445:       DSIGMA( 1 ) = ZERO
  446:       HLFTOL = TOL / TWO
  447:       IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
  448:      $   DSIGMA( 2 ) = HLFTOL
  449:       IF( M.GT.N ) THEN
  450:          Z( 1 ) = DLAPY2( Z1, Z( M ) )
  451:          IF( Z( 1 ).LE.TOL ) THEN
  452:             C = ONE
  453:             S = ZERO
  454:             Z( 1 ) = TOL
  455:          ELSE
  456:             C = Z1 / Z( 1 )
  457:             S = Z( M ) / Z( 1 )
  458:          END IF
  459:       ELSE
  460:          IF( ABS( Z1 ).LE.TOL ) THEN
  461:             Z( 1 ) = TOL
  462:          ELSE
  463:             Z( 1 ) = Z1
  464:          END IF
  465:       END IF
  466: *
  467: *     Move the rest of the updating row to Z.
  468: *
  469:       CALL DCOPY( K-1, U2( 2, 1 ), 1, Z( 2 ), 1 )
  470: *
  471: *     Determine the first column of U2, the first row of VT2 and the
  472: *     last row of VT.
  473: *
  474:       CALL DLASET( 'A', N, 1, ZERO, ZERO, U2, LDU2 )
  475:       U2( NLP1, 1 ) = ONE
  476:       IF( M.GT.N ) THEN
  477:          DO 170 I = 1, NLP1
  478:             VT( M, I ) = -S*VT( NLP1, I )
  479:             VT2( 1, I ) = C*VT( NLP1, I )
  480:   170    CONTINUE
  481:          DO 180 I = NLP2, M
  482:             VT2( 1, I ) = S*VT( M, I )
  483:             VT( M, I ) = C*VT( M, I )
  484:   180    CONTINUE
  485:       ELSE
  486:          CALL DCOPY( M, VT( NLP1, 1 ), LDVT, VT2( 1, 1 ), LDVT2 )
  487:       END IF
  488:       IF( M.GT.N ) THEN
  489:          CALL DCOPY( M, VT( M, 1 ), LDVT, VT2( M, 1 ), LDVT2 )
  490:       END IF
  491: *
  492: *     The deflated singular values and their corresponding vectors go
  493: *     into the back of D, U, and V respectively.
  494: *
  495:       IF( N.GT.K ) THEN
  496:          CALL DCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
  497:          CALL DLACPY( 'A', N, N-K, U2( 1, K+1 ), LDU2, U( 1, K+1 ),
  498:      $                LDU )
  499:          CALL DLACPY( 'A', N-K, M, VT2( K+1, 1 ), LDVT2, VT( K+1, 1 ),
  500:      $                LDVT )
  501:       END IF
  502: *
  503: *     Copy CTOT into COLTYP for referencing in DLASD3.
  504: *
  505:       DO 190 J = 1, 4
  506:          COLTYP( J ) = CTOT( J )
  507:   190 CONTINUE
  508: *
  509:       RETURN
  510: *
  511: *     End of DLASD2
  512: *
  513:       END

CVSweb interface <joel.bertrand@systella.fr>