Annotation of rpl/lapack/lapack/dlasd2.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT,
        !             2:      $                   LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX,
        !             3:      $                   IDXC, IDXQ, COLTYP, INFO )
        !             4: *
        !             5: *  -- LAPACK auxiliary routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       INTEGER            INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE
        !            12:       DOUBLE PRECISION   ALPHA, BETA
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       INTEGER            COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ),
        !            16:      $                   IDXQ( * )
        !            17:       DOUBLE PRECISION   D( * ), DSIGMA( * ), U( LDU, * ),
        !            18:      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
        !            19:      $                   Z( * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  DLASD2 merges the two sets of singular values together into a single
        !            26: *  sorted set.  Then it tries to deflate the size of the problem.
        !            27: *  There are two ways in which deflation can occur:  when two or more
        !            28: *  singular values are close together or if there is a tiny entry in the
        !            29: *  Z vector.  For each such occurrence the order of the related secular
        !            30: *  equation problem is reduced by one.
        !            31: *
        !            32: *  DLASD2 is called from DLASD1.
        !            33: *
        !            34: *  Arguments
        !            35: *  =========
        !            36: *
        !            37: *  NL     (input) INTEGER
        !            38: *         The row dimension of the upper block.  NL >= 1.
        !            39: *
        !            40: *  NR     (input) INTEGER
        !            41: *         The row dimension of the lower block.  NR >= 1.
        !            42: *
        !            43: *  SQRE   (input) INTEGER
        !            44: *         = 0: the lower block is an NR-by-NR square matrix.
        !            45: *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
        !            46: *
        !            47: *         The bidiagonal matrix has N = NL + NR + 1 rows and
        !            48: *         M = N + SQRE >= N columns.
        !            49: *
        !            50: *  K      (output) INTEGER
        !            51: *         Contains the dimension of the non-deflated matrix,
        !            52: *         This is the order of the related secular equation. 1 <= K <=N.
        !            53: *
        !            54: *  D      (input/output) DOUBLE PRECISION array, dimension(N)
        !            55: *         On entry D contains the singular values of the two submatrices
        !            56: *         to be combined.  On exit D contains the trailing (N-K) updated
        !            57: *         singular values (those which were deflated) sorted into
        !            58: *         increasing order.
        !            59: *
        !            60: *  Z      (output) DOUBLE PRECISION array, dimension(N)
        !            61: *         On exit Z contains the updating row vector in the secular
        !            62: *         equation.
        !            63: *
        !            64: *  ALPHA  (input) DOUBLE PRECISION
        !            65: *         Contains the diagonal element associated with the added row.
        !            66: *
        !            67: *  BETA   (input) DOUBLE PRECISION
        !            68: *         Contains the off-diagonal element associated with the added
        !            69: *         row.
        !            70: *
        !            71: *  U      (input/output) DOUBLE PRECISION array, dimension(LDU,N)
        !            72: *         On entry U contains the left singular vectors of two
        !            73: *         submatrices in the two square blocks with corners at (1,1),
        !            74: *         (NL, NL), and (NL+2, NL+2), (N,N).
        !            75: *         On exit U contains the trailing (N-K) updated left singular
        !            76: *         vectors (those which were deflated) in its last N-K columns.
        !            77: *
        !            78: *  LDU    (input) INTEGER
        !            79: *         The leading dimension of the array U.  LDU >= N.
        !            80: *
        !            81: *  VT     (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
        !            82: *         On entry VT' contains the right singular vectors of two
        !            83: *         submatrices in the two square blocks with corners at (1,1),
        !            84: *         (NL+1, NL+1), and (NL+2, NL+2), (M,M).
        !            85: *         On exit VT' contains the trailing (N-K) updated right singular
        !            86: *         vectors (those which were deflated) in its last N-K columns.
        !            87: *         In case SQRE =1, the last row of VT spans the right null
        !            88: *         space.
        !            89: *
        !            90: *  LDVT   (input) INTEGER
        !            91: *         The leading dimension of the array VT.  LDVT >= M.
        !            92: *
        !            93: *  DSIGMA (output) DOUBLE PRECISION array, dimension (N)
        !            94: *         Contains a copy of the diagonal elements (K-1 singular values
        !            95: *         and one zero) in the secular equation.
        !            96: *
        !            97: *  U2     (output) DOUBLE PRECISION array, dimension(LDU2,N)
        !            98: *         Contains a copy of the first K-1 left singular vectors which
        !            99: *         will be used by DLASD3 in a matrix multiply (DGEMM) to solve
        !           100: *         for the new left singular vectors. U2 is arranged into four
        !           101: *         blocks. The first block contains a column with 1 at NL+1 and
        !           102: *         zero everywhere else; the second block contains non-zero
        !           103: *         entries only at and above NL; the third contains non-zero
        !           104: *         entries only below NL+1; and the fourth is dense.
        !           105: *
        !           106: *  LDU2   (input) INTEGER
        !           107: *         The leading dimension of the array U2.  LDU2 >= N.
        !           108: *
        !           109: *  VT2    (output) DOUBLE PRECISION array, dimension(LDVT2,N)
        !           110: *         VT2' contains a copy of the first K right singular vectors
        !           111: *         which will be used by DLASD3 in a matrix multiply (DGEMM) to
        !           112: *         solve for the new right singular vectors. VT2 is arranged into
        !           113: *         three blocks. The first block contains a row that corresponds
        !           114: *         to the special 0 diagonal element in SIGMA; the second block
        !           115: *         contains non-zeros only at and before NL +1; the third block
        !           116: *         contains non-zeros only at and after  NL +2.
        !           117: *
        !           118: *  LDVT2  (input) INTEGER
        !           119: *         The leading dimension of the array VT2.  LDVT2 >= M.
        !           120: *
        !           121: *  IDXP   (workspace) INTEGER array dimension(N)
        !           122: *         This will contain the permutation used to place deflated
        !           123: *         values of D at the end of the array. On output IDXP(2:K)
        !           124: *         points to the nondeflated D-values and IDXP(K+1:N)
        !           125: *         points to the deflated singular values.
        !           126: *
        !           127: *  IDX    (workspace) INTEGER array dimension(N)
        !           128: *         This will contain the permutation used to sort the contents of
        !           129: *         D into ascending order.
        !           130: *
        !           131: *  IDXC   (output) INTEGER array dimension(N)
        !           132: *         This will contain the permutation used to arrange the columns
        !           133: *         of the deflated U matrix into three groups:  the first group
        !           134: *         contains non-zero entries only at and above NL, the second
        !           135: *         contains non-zero entries only below NL+2, and the third is
        !           136: *         dense.
        !           137: *
        !           138: *  IDXQ   (input/output) INTEGER array dimension(N)
        !           139: *         This contains the permutation which separately sorts the two
        !           140: *         sub-problems in D into ascending order.  Note that entries in
        !           141: *         the first hlaf of this permutation must first be moved one
        !           142: *         position backward; and entries in the second half
        !           143: *         must first have NL+1 added to their values.
        !           144: *
        !           145: *  COLTYP (workspace/output) INTEGER array dimension(N)
        !           146: *         As workspace, this will contain a label which will indicate
        !           147: *         which of the following types a column in the U2 matrix or a
        !           148: *         row in the VT2 matrix is:
        !           149: *         1 : non-zero in the upper half only
        !           150: *         2 : non-zero in the lower half only
        !           151: *         3 : dense
        !           152: *         4 : deflated
        !           153: *
        !           154: *         On exit, it is an array of dimension 4, with COLTYP(I) being
        !           155: *         the dimension of the I-th type columns.
        !           156: *
        !           157: *  INFO   (output) INTEGER
        !           158: *          = 0:  successful exit.
        !           159: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           160: *
        !           161: *  Further Details
        !           162: *  ===============
        !           163: *
        !           164: *  Based on contributions by
        !           165: *     Ming Gu and Huan Ren, Computer Science Division, University of
        !           166: *     California at Berkeley, USA
        !           167: *
        !           168: *  =====================================================================
        !           169: *
        !           170: *     .. Parameters ..
        !           171:       DOUBLE PRECISION   ZERO, ONE, TWO, EIGHT
        !           172:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
        !           173:      $                   EIGHT = 8.0D+0 )
        !           174: *     ..
        !           175: *     .. Local Arrays ..
        !           176:       INTEGER            CTOT( 4 ), PSM( 4 )
        !           177: *     ..
        !           178: *     .. Local Scalars ..
        !           179:       INTEGER            CT, I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M,
        !           180:      $                   N, NLP1, NLP2
        !           181:       DOUBLE PRECISION   C, EPS, HLFTOL, S, TAU, TOL, Z1
        !           182: *     ..
        !           183: *     .. External Functions ..
        !           184:       DOUBLE PRECISION   DLAMCH, DLAPY2
        !           185:       EXTERNAL           DLAMCH, DLAPY2
        !           186: *     ..
        !           187: *     .. External Subroutines ..
        !           188:       EXTERNAL           DCOPY, DLACPY, DLAMRG, DLASET, DROT, XERBLA
        !           189: *     ..
        !           190: *     .. Intrinsic Functions ..
        !           191:       INTRINSIC          ABS, MAX
        !           192: *     ..
        !           193: *     .. Executable Statements ..
        !           194: *
        !           195: *     Test the input parameters.
        !           196: *
        !           197:       INFO = 0
        !           198: *
        !           199:       IF( NL.LT.1 ) THEN
        !           200:          INFO = -1
        !           201:       ELSE IF( NR.LT.1 ) THEN
        !           202:          INFO = -2
        !           203:       ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
        !           204:          INFO = -3
        !           205:       END IF
        !           206: *
        !           207:       N = NL + NR + 1
        !           208:       M = N + SQRE
        !           209: *
        !           210:       IF( LDU.LT.N ) THEN
        !           211:          INFO = -10
        !           212:       ELSE IF( LDVT.LT.M ) THEN
        !           213:          INFO = -12
        !           214:       ELSE IF( LDU2.LT.N ) THEN
        !           215:          INFO = -15
        !           216:       ELSE IF( LDVT2.LT.M ) THEN
        !           217:          INFO = -17
        !           218:       END IF
        !           219:       IF( INFO.NE.0 ) THEN
        !           220:          CALL XERBLA( 'DLASD2', -INFO )
        !           221:          RETURN
        !           222:       END IF
        !           223: *
        !           224:       NLP1 = NL + 1
        !           225:       NLP2 = NL + 2
        !           226: *
        !           227: *     Generate the first part of the vector Z; and move the singular
        !           228: *     values in the first part of D one position backward.
        !           229: *
        !           230:       Z1 = ALPHA*VT( NLP1, NLP1 )
        !           231:       Z( 1 ) = Z1
        !           232:       DO 10 I = NL, 1, -1
        !           233:          Z( I+1 ) = ALPHA*VT( I, NLP1 )
        !           234:          D( I+1 ) = D( I )
        !           235:          IDXQ( I+1 ) = IDXQ( I ) + 1
        !           236:    10 CONTINUE
        !           237: *
        !           238: *     Generate the second part of the vector Z.
        !           239: *
        !           240:       DO 20 I = NLP2, M
        !           241:          Z( I ) = BETA*VT( I, NLP2 )
        !           242:    20 CONTINUE
        !           243: *
        !           244: *     Initialize some reference arrays.
        !           245: *
        !           246:       DO 30 I = 2, NLP1
        !           247:          COLTYP( I ) = 1
        !           248:    30 CONTINUE
        !           249:       DO 40 I = NLP2, N
        !           250:          COLTYP( I ) = 2
        !           251:    40 CONTINUE
        !           252: *
        !           253: *     Sort the singular values into increasing order
        !           254: *
        !           255:       DO 50 I = NLP2, N
        !           256:          IDXQ( I ) = IDXQ( I ) + NLP1
        !           257:    50 CONTINUE
        !           258: *
        !           259: *     DSIGMA, IDXC, IDXC, and the first column of U2
        !           260: *     are used as storage space.
        !           261: *
        !           262:       DO 60 I = 2, N
        !           263:          DSIGMA( I ) = D( IDXQ( I ) )
        !           264:          U2( I, 1 ) = Z( IDXQ( I ) )
        !           265:          IDXC( I ) = COLTYP( IDXQ( I ) )
        !           266:    60 CONTINUE
        !           267: *
        !           268:       CALL DLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
        !           269: *
        !           270:       DO 70 I = 2, N
        !           271:          IDXI = 1 + IDX( I )
        !           272:          D( I ) = DSIGMA( IDXI )
        !           273:          Z( I ) = U2( IDXI, 1 )
        !           274:          COLTYP( I ) = IDXC( IDXI )
        !           275:    70 CONTINUE
        !           276: *
        !           277: *     Calculate the allowable deflation tolerance
        !           278: *
        !           279:       EPS = DLAMCH( 'Epsilon' )
        !           280:       TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
        !           281:       TOL = EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
        !           282: *
        !           283: *     There are 2 kinds of deflation -- first a value in the z-vector
        !           284: *     is small, second two (or more) singular values are very close
        !           285: *     together (their difference is small).
        !           286: *
        !           287: *     If the value in the z-vector is small, we simply permute the
        !           288: *     array so that the corresponding singular value is moved to the
        !           289: *     end.
        !           290: *
        !           291: *     If two values in the D-vector are close, we perform a two-sided
        !           292: *     rotation designed to make one of the corresponding z-vector
        !           293: *     entries zero, and then permute the array so that the deflated
        !           294: *     singular value is moved to the end.
        !           295: *
        !           296: *     If there are multiple singular values then the problem deflates.
        !           297: *     Here the number of equal singular values are found.  As each equal
        !           298: *     singular value is found, an elementary reflector is computed to
        !           299: *     rotate the corresponding singular subspace so that the
        !           300: *     corresponding components of Z are zero in this new basis.
        !           301: *
        !           302:       K = 1
        !           303:       K2 = N + 1
        !           304:       DO 80 J = 2, N
        !           305:          IF( ABS( Z( J ) ).LE.TOL ) THEN
        !           306: *
        !           307: *           Deflate due to small z component.
        !           308: *
        !           309:             K2 = K2 - 1
        !           310:             IDXP( K2 ) = J
        !           311:             COLTYP( J ) = 4
        !           312:             IF( J.EQ.N )
        !           313:      $         GO TO 120
        !           314:          ELSE
        !           315:             JPREV = J
        !           316:             GO TO 90
        !           317:          END IF
        !           318:    80 CONTINUE
        !           319:    90 CONTINUE
        !           320:       J = JPREV
        !           321:   100 CONTINUE
        !           322:       J = J + 1
        !           323:       IF( J.GT.N )
        !           324:      $   GO TO 110
        !           325:       IF( ABS( Z( J ) ).LE.TOL ) THEN
        !           326: *
        !           327: *        Deflate due to small z component.
        !           328: *
        !           329:          K2 = K2 - 1
        !           330:          IDXP( K2 ) = J
        !           331:          COLTYP( J ) = 4
        !           332:       ELSE
        !           333: *
        !           334: *        Check if singular values are close enough to allow deflation.
        !           335: *
        !           336:          IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
        !           337: *
        !           338: *           Deflation is possible.
        !           339: *
        !           340:             S = Z( JPREV )
        !           341:             C = Z( J )
        !           342: *
        !           343: *           Find sqrt(a**2+b**2) without overflow or
        !           344: *           destructive underflow.
        !           345: *
        !           346:             TAU = DLAPY2( C, S )
        !           347:             C = C / TAU
        !           348:             S = -S / TAU
        !           349:             Z( J ) = TAU
        !           350:             Z( JPREV ) = ZERO
        !           351: *
        !           352: *           Apply back the Givens rotation to the left and right
        !           353: *           singular vector matrices.
        !           354: *
        !           355:             IDXJP = IDXQ( IDX( JPREV )+1 )
        !           356:             IDXJ = IDXQ( IDX( J )+1 )
        !           357:             IF( IDXJP.LE.NLP1 ) THEN
        !           358:                IDXJP = IDXJP - 1
        !           359:             END IF
        !           360:             IF( IDXJ.LE.NLP1 ) THEN
        !           361:                IDXJ = IDXJ - 1
        !           362:             END IF
        !           363:             CALL DROT( N, U( 1, IDXJP ), 1, U( 1, IDXJ ), 1, C, S )
        !           364:             CALL DROT( M, VT( IDXJP, 1 ), LDVT, VT( IDXJ, 1 ), LDVT, C,
        !           365:      $                 S )
        !           366:             IF( COLTYP( J ).NE.COLTYP( JPREV ) ) THEN
        !           367:                COLTYP( J ) = 3
        !           368:             END IF
        !           369:             COLTYP( JPREV ) = 4
        !           370:             K2 = K2 - 1
        !           371:             IDXP( K2 ) = JPREV
        !           372:             JPREV = J
        !           373:          ELSE
        !           374:             K = K + 1
        !           375:             U2( K, 1 ) = Z( JPREV )
        !           376:             DSIGMA( K ) = D( JPREV )
        !           377:             IDXP( K ) = JPREV
        !           378:             JPREV = J
        !           379:          END IF
        !           380:       END IF
        !           381:       GO TO 100
        !           382:   110 CONTINUE
        !           383: *
        !           384: *     Record the last singular value.
        !           385: *
        !           386:       K = K + 1
        !           387:       U2( K, 1 ) = Z( JPREV )
        !           388:       DSIGMA( K ) = D( JPREV )
        !           389:       IDXP( K ) = JPREV
        !           390: *
        !           391:   120 CONTINUE
        !           392: *
        !           393: *     Count up the total number of the various types of columns, then
        !           394: *     form a permutation which positions the four column types into
        !           395: *     four groups of uniform structure (although one or more of these
        !           396: *     groups may be empty).
        !           397: *
        !           398:       DO 130 J = 1, 4
        !           399:          CTOT( J ) = 0
        !           400:   130 CONTINUE
        !           401:       DO 140 J = 2, N
        !           402:          CT = COLTYP( J )
        !           403:          CTOT( CT ) = CTOT( CT ) + 1
        !           404:   140 CONTINUE
        !           405: *
        !           406: *     PSM(*) = Position in SubMatrix (of types 1 through 4)
        !           407: *
        !           408:       PSM( 1 ) = 2
        !           409:       PSM( 2 ) = 2 + CTOT( 1 )
        !           410:       PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
        !           411:       PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
        !           412: *
        !           413: *     Fill out the IDXC array so that the permutation which it induces
        !           414: *     will place all type-1 columns first, all type-2 columns next,
        !           415: *     then all type-3's, and finally all type-4's, starting from the
        !           416: *     second column. This applies similarly to the rows of VT.
        !           417: *
        !           418:       DO 150 J = 2, N
        !           419:          JP = IDXP( J )
        !           420:          CT = COLTYP( JP )
        !           421:          IDXC( PSM( CT ) ) = J
        !           422:          PSM( CT ) = PSM( CT ) + 1
        !           423:   150 CONTINUE
        !           424: *
        !           425: *     Sort the singular values and corresponding singular vectors into
        !           426: *     DSIGMA, U2, and VT2 respectively.  The singular values/vectors
        !           427: *     which were not deflated go into the first K slots of DSIGMA, U2,
        !           428: *     and VT2 respectively, while those which were deflated go into the
        !           429: *     last N - K slots, except that the first column/row will be treated
        !           430: *     separately.
        !           431: *
        !           432:       DO 160 J = 2, N
        !           433:          JP = IDXP( J )
        !           434:          DSIGMA( J ) = D( JP )
        !           435:          IDXJ = IDXQ( IDX( IDXP( IDXC( J ) ) )+1 )
        !           436:          IF( IDXJ.LE.NLP1 ) THEN
        !           437:             IDXJ = IDXJ - 1
        !           438:          END IF
        !           439:          CALL DCOPY( N, U( 1, IDXJ ), 1, U2( 1, J ), 1 )
        !           440:          CALL DCOPY( M, VT( IDXJ, 1 ), LDVT, VT2( J, 1 ), LDVT2 )
        !           441:   160 CONTINUE
        !           442: *
        !           443: *     Determine DSIGMA(1), DSIGMA(2) and Z(1)
        !           444: *
        !           445:       DSIGMA( 1 ) = ZERO
        !           446:       HLFTOL = TOL / TWO
        !           447:       IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
        !           448:      $   DSIGMA( 2 ) = HLFTOL
        !           449:       IF( M.GT.N ) THEN
        !           450:          Z( 1 ) = DLAPY2( Z1, Z( M ) )
        !           451:          IF( Z( 1 ).LE.TOL ) THEN
        !           452:             C = ONE
        !           453:             S = ZERO
        !           454:             Z( 1 ) = TOL
        !           455:          ELSE
        !           456:             C = Z1 / Z( 1 )
        !           457:             S = Z( M ) / Z( 1 )
        !           458:          END IF
        !           459:       ELSE
        !           460:          IF( ABS( Z1 ).LE.TOL ) THEN
        !           461:             Z( 1 ) = TOL
        !           462:          ELSE
        !           463:             Z( 1 ) = Z1
        !           464:          END IF
        !           465:       END IF
        !           466: *
        !           467: *     Move the rest of the updating row to Z.
        !           468: *
        !           469:       CALL DCOPY( K-1, U2( 2, 1 ), 1, Z( 2 ), 1 )
        !           470: *
        !           471: *     Determine the first column of U2, the first row of VT2 and the
        !           472: *     last row of VT.
        !           473: *
        !           474:       CALL DLASET( 'A', N, 1, ZERO, ZERO, U2, LDU2 )
        !           475:       U2( NLP1, 1 ) = ONE
        !           476:       IF( M.GT.N ) THEN
        !           477:          DO 170 I = 1, NLP1
        !           478:             VT( M, I ) = -S*VT( NLP1, I )
        !           479:             VT2( 1, I ) = C*VT( NLP1, I )
        !           480:   170    CONTINUE
        !           481:          DO 180 I = NLP2, M
        !           482:             VT2( 1, I ) = S*VT( M, I )
        !           483:             VT( M, I ) = C*VT( M, I )
        !           484:   180    CONTINUE
        !           485:       ELSE
        !           486:          CALL DCOPY( M, VT( NLP1, 1 ), LDVT, VT2( 1, 1 ), LDVT2 )
        !           487:       END IF
        !           488:       IF( M.GT.N ) THEN
        !           489:          CALL DCOPY( M, VT( M, 1 ), LDVT, VT2( M, 1 ), LDVT2 )
        !           490:       END IF
        !           491: *
        !           492: *     The deflated singular values and their corresponding vectors go
        !           493: *     into the back of D, U, and V respectively.
        !           494: *
        !           495:       IF( N.GT.K ) THEN
        !           496:          CALL DCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
        !           497:          CALL DLACPY( 'A', N, N-K, U2( 1, K+1 ), LDU2, U( 1, K+1 ),
        !           498:      $                LDU )
        !           499:          CALL DLACPY( 'A', N-K, M, VT2( K+1, 1 ), LDVT2, VT( K+1, 1 ),
        !           500:      $                LDVT )
        !           501:       END IF
        !           502: *
        !           503: *     Copy CTOT into COLTYP for referencing in DLASD3.
        !           504: *
        !           505:       DO 190 J = 1, 4
        !           506:          COLTYP( J ) = CTOT( J )
        !           507:   190 CONTINUE
        !           508: *
        !           509:       RETURN
        !           510: *
        !           511: *     End of DLASD2
        !           512: *
        !           513:       END

CVSweb interface <joel.bertrand@systella.fr>