File:  [local] / rpl / lapack / lapack / dlasd1.f
Revision 1.22: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:58 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLASD1 computes the SVD of an upper bidiagonal matrix B of the specified size. Used by sbdsdc.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLASD1 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd1.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd1.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd1.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT,
   22: *                          IDXQ, IWORK, WORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDU, LDVT, NL, NR, SQRE
   26: *       DOUBLE PRECISION   ALPHA, BETA
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IDXQ( * ), IWORK( * )
   30: *       DOUBLE PRECISION   D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
   40: *> where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0.
   41: *>
   42: *> A related subroutine DLASD7 handles the case in which the singular
   43: *> values (and the singular vectors in factored form) are desired.
   44: *>
   45: *> DLASD1 computes the SVD as follows:
   46: *>
   47: *>               ( D1(in)    0    0       0 )
   48: *>   B = U(in) * (   Z1**T   a   Z2**T    b ) * VT(in)
   49: *>               (   0       0   D2(in)   0 )
   50: *>
   51: *>     = U(out) * ( D(out) 0) * VT(out)
   52: *>
   53: *> where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M
   54: *> with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
   55: *> elsewhere; and the entry b is empty if SQRE = 0.
   56: *>
   57: *> The left singular vectors of the original matrix are stored in U, and
   58: *> the transpose of the right singular vectors are stored in VT, and the
   59: *> singular values are in D.  The algorithm consists of three stages:
   60: *>
   61: *>    The first stage consists of deflating the size of the problem
   62: *>    when there are multiple singular values or when there are zeros in
   63: *>    the Z vector.  For each such occurrence the dimension of the
   64: *>    secular equation problem is reduced by one.  This stage is
   65: *>    performed by the routine DLASD2.
   66: *>
   67: *>    The second stage consists of calculating the updated
   68: *>    singular values. This is done by finding the square roots of the
   69: *>    roots of the secular equation via the routine DLASD4 (as called
   70: *>    by DLASD3). This routine also calculates the singular vectors of
   71: *>    the current problem.
   72: *>
   73: *>    The final stage consists of computing the updated singular vectors
   74: *>    directly using the updated singular values.  The singular vectors
   75: *>    for the current problem are multiplied with the singular vectors
   76: *>    from the overall problem.
   77: *> \endverbatim
   78: *
   79: *  Arguments:
   80: *  ==========
   81: *
   82: *> \param[in] NL
   83: *> \verbatim
   84: *>          NL is INTEGER
   85: *>         The row dimension of the upper block.  NL >= 1.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] NR
   89: *> \verbatim
   90: *>          NR is INTEGER
   91: *>         The row dimension of the lower block.  NR >= 1.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] SQRE
   95: *> \verbatim
   96: *>          SQRE is INTEGER
   97: *>         = 0: the lower block is an NR-by-NR square matrix.
   98: *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
   99: *>
  100: *>         The bidiagonal matrix has row dimension N = NL + NR + 1,
  101: *>         and column dimension M = N + SQRE.
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] D
  105: *> \verbatim
  106: *>          D is DOUBLE PRECISION array,
  107: *>                        dimension (N = NL+NR+1).
  108: *>         On entry D(1:NL,1:NL) contains the singular values of the
  109: *>         upper block; and D(NL+2:N) contains the singular values of
  110: *>         the lower block. On exit D(1:N) contains the singular values
  111: *>         of the modified matrix.
  112: *> \endverbatim
  113: *>
  114: *> \param[in,out] ALPHA
  115: *> \verbatim
  116: *>          ALPHA is DOUBLE PRECISION
  117: *>         Contains the diagonal element associated with the added row.
  118: *> \endverbatim
  119: *>
  120: *> \param[in,out] BETA
  121: *> \verbatim
  122: *>          BETA is DOUBLE PRECISION
  123: *>         Contains the off-diagonal element associated with the added
  124: *>         row.
  125: *> \endverbatim
  126: *>
  127: *> \param[in,out] U
  128: *> \verbatim
  129: *>          U is DOUBLE PRECISION array, dimension(LDU,N)
  130: *>         On entry U(1:NL, 1:NL) contains the left singular vectors of
  131: *>         the upper block; U(NL+2:N, NL+2:N) contains the left singular
  132: *>         vectors of the lower block. On exit U contains the left
  133: *>         singular vectors of the bidiagonal matrix.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] LDU
  137: *> \verbatim
  138: *>          LDU is INTEGER
  139: *>         The leading dimension of the array U.  LDU >= max( 1, N ).
  140: *> \endverbatim
  141: *>
  142: *> \param[in,out] VT
  143: *> \verbatim
  144: *>          VT is DOUBLE PRECISION array, dimension(LDVT,M)
  145: *>         where M = N + SQRE.
  146: *>         On entry VT(1:NL+1, 1:NL+1)**T contains the right singular
  147: *>         vectors of the upper block; VT(NL+2:M, NL+2:M)**T contains
  148: *>         the right singular vectors of the lower block. On exit
  149: *>         VT**T contains the right singular vectors of the
  150: *>         bidiagonal matrix.
  151: *> \endverbatim
  152: *>
  153: *> \param[in] LDVT
  154: *> \verbatim
  155: *>          LDVT is INTEGER
  156: *>         The leading dimension of the array VT.  LDVT >= max( 1, M ).
  157: *> \endverbatim
  158: *>
  159: *> \param[in,out] IDXQ
  160: *> \verbatim
  161: *>          IDXQ is INTEGER array, dimension(N)
  162: *>         This contains the permutation which will reintegrate the
  163: *>         subproblem just solved back into sorted order, i.e.
  164: *>         D( IDXQ( I = 1, N ) ) will be in ascending order.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] IWORK
  168: *> \verbatim
  169: *>          IWORK is INTEGER array, dimension( 4 * N )
  170: *> \endverbatim
  171: *>
  172: *> \param[out] WORK
  173: *> \verbatim
  174: *>          WORK is DOUBLE PRECISION array, dimension( 3*M**2 + 2*M )
  175: *> \endverbatim
  176: *>
  177: *> \param[out] INFO
  178: *> \verbatim
  179: *>          INFO is INTEGER
  180: *>          = 0:  successful exit.
  181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  182: *>          > 0:  if INFO = 1, a singular value did not converge
  183: *> \endverbatim
  184: *
  185: *  Authors:
  186: *  ========
  187: *
  188: *> \author Univ. of Tennessee
  189: *> \author Univ. of California Berkeley
  190: *> \author Univ. of Colorado Denver
  191: *> \author NAG Ltd.
  192: *
  193: *> \ingroup OTHERauxiliary
  194: *
  195: *> \par Contributors:
  196: *  ==================
  197: *>
  198: *>     Ming Gu and Huan Ren, Computer Science Division, University of
  199: *>     California at Berkeley, USA
  200: *>
  201: *  =====================================================================
  202:       SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT,
  203:      $                   IDXQ, IWORK, WORK, INFO )
  204: *
  205: *  -- LAPACK auxiliary routine --
  206: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  207: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  208: *
  209: *     .. Scalar Arguments ..
  210:       INTEGER            INFO, LDU, LDVT, NL, NR, SQRE
  211:       DOUBLE PRECISION   ALPHA, BETA
  212: *     ..
  213: *     .. Array Arguments ..
  214:       INTEGER            IDXQ( * ), IWORK( * )
  215:       DOUBLE PRECISION   D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
  216: *     ..
  217: *
  218: *  =====================================================================
  219: *
  220: *     .. Parameters ..
  221: *
  222:       DOUBLE PRECISION   ONE, ZERO
  223:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  224: *     ..
  225: *     .. Local Scalars ..
  226:       INTEGER            COLTYP, I, IDX, IDXC, IDXP, IQ, ISIGMA, IU2,
  227:      $                   IVT2, IZ, K, LDQ, LDU2, LDVT2, M, N, N1, N2
  228:       DOUBLE PRECISION   ORGNRM
  229: *     ..
  230: *     .. External Subroutines ..
  231:       EXTERNAL           DLAMRG, DLASCL, DLASD2, DLASD3, XERBLA
  232: *     ..
  233: *     .. Intrinsic Functions ..
  234:       INTRINSIC          ABS, MAX
  235: *     ..
  236: *     .. Executable Statements ..
  237: *
  238: *     Test the input parameters.
  239: *
  240:       INFO = 0
  241: *
  242:       IF( NL.LT.1 ) THEN
  243:          INFO = -1
  244:       ELSE IF( NR.LT.1 ) THEN
  245:          INFO = -2
  246:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
  247:          INFO = -3
  248:       END IF
  249:       IF( INFO.NE.0 ) THEN
  250:          CALL XERBLA( 'DLASD1', -INFO )
  251:          RETURN
  252:       END IF
  253: *
  254:       N = NL + NR + 1
  255:       M = N + SQRE
  256: *
  257: *     The following values are for bookkeeping purposes only.  They are
  258: *     integer pointers which indicate the portion of the workspace
  259: *     used by a particular array in DLASD2 and DLASD3.
  260: *
  261:       LDU2 = N
  262:       LDVT2 = M
  263: *
  264:       IZ = 1
  265:       ISIGMA = IZ + M
  266:       IU2 = ISIGMA + N
  267:       IVT2 = IU2 + LDU2*N
  268:       IQ = IVT2 + LDVT2*M
  269: *
  270:       IDX = 1
  271:       IDXC = IDX + N
  272:       COLTYP = IDXC + N
  273:       IDXP = COLTYP + N
  274: *
  275: *     Scale.
  276: *
  277:       ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
  278:       D( NL+1 ) = ZERO
  279:       DO 10 I = 1, N
  280:          IF( ABS( D( I ) ).GT.ORGNRM ) THEN
  281:             ORGNRM = ABS( D( I ) )
  282:          END IF
  283:    10 CONTINUE
  284:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
  285:       ALPHA = ALPHA / ORGNRM
  286:       BETA = BETA / ORGNRM
  287: *
  288: *     Deflate singular values.
  289: *
  290:       CALL DLASD2( NL, NR, SQRE, K, D, WORK( IZ ), ALPHA, BETA, U, LDU,
  291:      $             VT, LDVT, WORK( ISIGMA ), WORK( IU2 ), LDU2,
  292:      $             WORK( IVT2 ), LDVT2, IWORK( IDXP ), IWORK( IDX ),
  293:      $             IWORK( IDXC ), IDXQ, IWORK( COLTYP ), INFO )
  294: *
  295: *     Solve Secular Equation and update singular vectors.
  296: *
  297:       LDQ = K
  298:       CALL DLASD3( NL, NR, SQRE, K, D, WORK( IQ ), LDQ, WORK( ISIGMA ),
  299:      $             U, LDU, WORK( IU2 ), LDU2, VT, LDVT, WORK( IVT2 ),
  300:      $             LDVT2, IWORK( IDXC ), IWORK( COLTYP ), WORK( IZ ),
  301:      $             INFO )
  302: *
  303: *     Report the convergence failure.
  304: *
  305:       IF( INFO.NE.0 ) THEN
  306:          RETURN
  307:       END IF
  308: *
  309: *     Unscale.
  310: *
  311:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  312: *
  313: *     Prepare the IDXQ sorting permutation.
  314: *
  315:       N1 = K
  316:       N2 = N - K
  317:       CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )
  318: *
  319:       RETURN
  320: *
  321: *     End of DLASD1
  322: *
  323:       END

CVSweb interface <joel.bertrand@systella.fr>