Annotation of rpl/lapack/lapack/dlasd1.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT,
                      2:      $                   IDXQ, IWORK, WORK, INFO )
                      3: *
                      4: *  -- LAPACK auxiliary routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDU, LDVT, NL, NR, SQRE
                     11:       DOUBLE PRECISION   ALPHA, BETA
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IDXQ( * ), IWORK( * )
                     15:       DOUBLE PRECISION   D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
                     22: *  where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0.
                     23: *
                     24: *  A related subroutine DLASD7 handles the case in which the singular
                     25: *  values (and the singular vectors in factored form) are desired.
                     26: *
                     27: *  DLASD1 computes the SVD as follows:
                     28: *
                     29: *                ( D1(in)  0    0     0 )
                     30: *    B = U(in) * (   Z1'   a   Z2'    b ) * VT(in)
                     31: *                (   0     0   D2(in) 0 )
                     32: *
                     33: *      = U(out) * ( D(out) 0) * VT(out)
                     34: *
                     35: *  where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M
                     36: *  with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
                     37: *  elsewhere; and the entry b is empty if SQRE = 0.
                     38: *
                     39: *  The left singular vectors of the original matrix are stored in U, and
                     40: *  the transpose of the right singular vectors are stored in VT, and the
                     41: *  singular values are in D.  The algorithm consists of three stages:
                     42: *
                     43: *     The first stage consists of deflating the size of the problem
                     44: *     when there are multiple singular values or when there are zeros in
                     45: *     the Z vector.  For each such occurence the dimension of the
                     46: *     secular equation problem is reduced by one.  This stage is
                     47: *     performed by the routine DLASD2.
                     48: *
                     49: *     The second stage consists of calculating the updated
                     50: *     singular values. This is done by finding the square roots of the
                     51: *     roots of the secular equation via the routine DLASD4 (as called
                     52: *     by DLASD3). This routine also calculates the singular vectors of
                     53: *     the current problem.
                     54: *
                     55: *     The final stage consists of computing the updated singular vectors
                     56: *     directly using the updated singular values.  The singular vectors
                     57: *     for the current problem are multiplied with the singular vectors
                     58: *     from the overall problem.
                     59: *
                     60: *  Arguments
                     61: *  =========
                     62: *
                     63: *  NL     (input) INTEGER
                     64: *         The row dimension of the upper block.  NL >= 1.
                     65: *
                     66: *  NR     (input) INTEGER
                     67: *         The row dimension of the lower block.  NR >= 1.
                     68: *
                     69: *  SQRE   (input) INTEGER
                     70: *         = 0: the lower block is an NR-by-NR square matrix.
                     71: *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
                     72: *
                     73: *         The bidiagonal matrix has row dimension N = NL + NR + 1,
                     74: *         and column dimension M = N + SQRE.
                     75: *
                     76: *  D      (input/output) DOUBLE PRECISION array,
                     77: *                        dimension (N = NL+NR+1).
                     78: *         On entry D(1:NL,1:NL) contains the singular values of the
                     79: *         upper block; and D(NL+2:N) contains the singular values of
                     80: *         the lower block. On exit D(1:N) contains the singular values
                     81: *         of the modified matrix.
                     82: *
                     83: *  ALPHA  (input/output) DOUBLE PRECISION
                     84: *         Contains the diagonal element associated with the added row.
                     85: *
                     86: *  BETA   (input/output) DOUBLE PRECISION
                     87: *         Contains the off-diagonal element associated with the added
                     88: *         row.
                     89: *
                     90: *  U      (input/output) DOUBLE PRECISION array, dimension(LDU,N)
                     91: *         On entry U(1:NL, 1:NL) contains the left singular vectors of
                     92: *         the upper block; U(NL+2:N, NL+2:N) contains the left singular
                     93: *         vectors of the lower block. On exit U contains the left
                     94: *         singular vectors of the bidiagonal matrix.
                     95: *
                     96: *  LDU    (input) INTEGER
                     97: *         The leading dimension of the array U.  LDU >= max( 1, N ).
                     98: *
                     99: *  VT     (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
                    100: *         where M = N + SQRE.
                    101: *         On entry VT(1:NL+1, 1:NL+1)' contains the right singular
                    102: *         vectors of the upper block; VT(NL+2:M, NL+2:M)' contains
                    103: *         the right singular vectors of the lower block. On exit
                    104: *         VT' contains the right singular vectors of the
                    105: *         bidiagonal matrix.
                    106: *
                    107: *  LDVT   (input) INTEGER
                    108: *         The leading dimension of the array VT.  LDVT >= max( 1, M ).
                    109: *
                    110: *  IDXQ  (output) INTEGER array, dimension(N)
                    111: *         This contains the permutation which will reintegrate the
                    112: *         subproblem just solved back into sorted order, i.e.
                    113: *         D( IDXQ( I = 1, N ) ) will be in ascending order.
                    114: *
                    115: *  IWORK  (workspace) INTEGER array, dimension( 4 * N )
                    116: *
                    117: *  WORK   (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M )
                    118: *
                    119: *  INFO   (output) INTEGER
                    120: *          = 0:  successful exit.
                    121: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    122: *          > 0:  if INFO = 1, an singular value did not converge
                    123: *
                    124: *  Further Details
                    125: *  ===============
                    126: *
                    127: *  Based on contributions by
                    128: *     Ming Gu and Huan Ren, Computer Science Division, University of
                    129: *     California at Berkeley, USA
                    130: *
                    131: *  =====================================================================
                    132: *
                    133: *     .. Parameters ..
                    134: *
                    135:       DOUBLE PRECISION   ONE, ZERO
                    136:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    137: *     ..
                    138: *     .. Local Scalars ..
                    139:       INTEGER            COLTYP, I, IDX, IDXC, IDXP, IQ, ISIGMA, IU2,
                    140:      $                   IVT2, IZ, K, LDQ, LDU2, LDVT2, M, N, N1, N2
                    141:       DOUBLE PRECISION   ORGNRM
                    142: *     ..
                    143: *     .. External Subroutines ..
                    144:       EXTERNAL           DLAMRG, DLASCL, DLASD2, DLASD3, XERBLA
                    145: *     ..
                    146: *     .. Intrinsic Functions ..
                    147:       INTRINSIC          ABS, MAX
                    148: *     ..
                    149: *     .. Executable Statements ..
                    150: *
                    151: *     Test the input parameters.
                    152: *
                    153:       INFO = 0
                    154: *
                    155:       IF( NL.LT.1 ) THEN
                    156:          INFO = -1
                    157:       ELSE IF( NR.LT.1 ) THEN
                    158:          INFO = -2
                    159:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
                    160:          INFO = -3
                    161:       END IF
                    162:       IF( INFO.NE.0 ) THEN
                    163:          CALL XERBLA( 'DLASD1', -INFO )
                    164:          RETURN
                    165:       END IF
                    166: *
                    167:       N = NL + NR + 1
                    168:       M = N + SQRE
                    169: *
                    170: *     The following values are for bookkeeping purposes only.  They are
                    171: *     integer pointers which indicate the portion of the workspace
                    172: *     used by a particular array in DLASD2 and DLASD3.
                    173: *
                    174:       LDU2 = N
                    175:       LDVT2 = M
                    176: *
                    177:       IZ = 1
                    178:       ISIGMA = IZ + M
                    179:       IU2 = ISIGMA + N
                    180:       IVT2 = IU2 + LDU2*N
                    181:       IQ = IVT2 + LDVT2*M
                    182: *
                    183:       IDX = 1
                    184:       IDXC = IDX + N
                    185:       COLTYP = IDXC + N
                    186:       IDXP = COLTYP + N
                    187: *
                    188: *     Scale.
                    189: *
                    190:       ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
                    191:       D( NL+1 ) = ZERO
                    192:       DO 10 I = 1, N
                    193:          IF( ABS( D( I ) ).GT.ORGNRM ) THEN
                    194:             ORGNRM = ABS( D( I ) )
                    195:          END IF
                    196:    10 CONTINUE
                    197:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
                    198:       ALPHA = ALPHA / ORGNRM
                    199:       BETA = BETA / ORGNRM
                    200: *
                    201: *     Deflate singular values.
                    202: *
                    203:       CALL DLASD2( NL, NR, SQRE, K, D, WORK( IZ ), ALPHA, BETA, U, LDU,
                    204:      $             VT, LDVT, WORK( ISIGMA ), WORK( IU2 ), LDU2,
                    205:      $             WORK( IVT2 ), LDVT2, IWORK( IDXP ), IWORK( IDX ),
                    206:      $             IWORK( IDXC ), IDXQ, IWORK( COLTYP ), INFO )
                    207: *
                    208: *     Solve Secular Equation and update singular vectors.
                    209: *
                    210:       LDQ = K
                    211:       CALL DLASD3( NL, NR, SQRE, K, D, WORK( IQ ), LDQ, WORK( ISIGMA ),
                    212:      $             U, LDU, WORK( IU2 ), LDU2, VT, LDVT, WORK( IVT2 ),
                    213:      $             LDVT2, IWORK( IDXC ), IWORK( COLTYP ), WORK( IZ ),
                    214:      $             INFO )
                    215:       IF( INFO.NE.0 ) THEN
                    216:          RETURN
                    217:       END IF
                    218: *
                    219: *     Unscale.
                    220: *
                    221:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
                    222: *
                    223: *     Prepare the IDXQ sorting permutation.
                    224: *
                    225:       N1 = K
                    226:       N2 = N - K
                    227:       CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )
                    228: *
                    229:       RETURN
                    230: *
                    231: *     End of DLASD1
                    232: *
                    233:       END

CVSweb interface <joel.bertrand@systella.fr>