Annotation of rpl/lapack/lapack/dlasd1.f, revision 1.18

1.13      bertrand    1: *> \brief \b DLASD1 computes the SVD of an upper bidiagonal matrix B of the specified size. Used by sbdsdc.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLASD1 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd1.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd1.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd1.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT,
                     22: *                          IDXQ, IWORK, WORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDU, LDVT, NL, NR, SQRE
                     26: *       DOUBLE PRECISION   ALPHA, BETA
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IDXQ( * ), IWORK( * )
                     30: *       DOUBLE PRECISION   D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
                     31: *       ..
                     32: *  
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
                     40: *> where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0.
                     41: *>
                     42: *> A related subroutine DLASD7 handles the case in which the singular
                     43: *> values (and the singular vectors in factored form) are desired.
                     44: *>
                     45: *> DLASD1 computes the SVD as follows:
                     46: *>
                     47: *>               ( D1(in)    0    0       0 )
                     48: *>   B = U(in) * (   Z1**T   a   Z2**T    b ) * VT(in)
                     49: *>               (   0       0   D2(in)   0 )
                     50: *>
                     51: *>     = U(out) * ( D(out) 0) * VT(out)
                     52: *>
                     53: *> where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M
                     54: *> with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
                     55: *> elsewhere; and the entry b is empty if SQRE = 0.
                     56: *>
                     57: *> The left singular vectors of the original matrix are stored in U, and
                     58: *> the transpose of the right singular vectors are stored in VT, and the
                     59: *> singular values are in D.  The algorithm consists of three stages:
                     60: *>
                     61: *>    The first stage consists of deflating the size of the problem
                     62: *>    when there are multiple singular values or when there are zeros in
1.17      bertrand   63: *>    the Z vector.  For each such occurrence the dimension of the
1.10      bertrand   64: *>    secular equation problem is reduced by one.  This stage is
                     65: *>    performed by the routine DLASD2.
                     66: *>
                     67: *>    The second stage consists of calculating the updated
                     68: *>    singular values. This is done by finding the square roots of the
                     69: *>    roots of the secular equation via the routine DLASD4 (as called
                     70: *>    by DLASD3). This routine also calculates the singular vectors of
                     71: *>    the current problem.
                     72: *>
                     73: *>    The final stage consists of computing the updated singular vectors
                     74: *>    directly using the updated singular values.  The singular vectors
                     75: *>    for the current problem are multiplied with the singular vectors
                     76: *>    from the overall problem.
                     77: *> \endverbatim
                     78: *
                     79: *  Arguments:
                     80: *  ==========
                     81: *
                     82: *> \param[in] NL
                     83: *> \verbatim
                     84: *>          NL is INTEGER
                     85: *>         The row dimension of the upper block.  NL >= 1.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in] NR
                     89: *> \verbatim
                     90: *>          NR is INTEGER
                     91: *>         The row dimension of the lower block.  NR >= 1.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] SQRE
                     95: *> \verbatim
                     96: *>          SQRE is INTEGER
                     97: *>         = 0: the lower block is an NR-by-NR square matrix.
                     98: *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
                     99: *>
                    100: *>         The bidiagonal matrix has row dimension N = NL + NR + 1,
                    101: *>         and column dimension M = N + SQRE.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in,out] D
                    105: *> \verbatim
                    106: *>          D is DOUBLE PRECISION array,
                    107: *>                        dimension (N = NL+NR+1).
                    108: *>         On entry D(1:NL,1:NL) contains the singular values of the
                    109: *>         upper block; and D(NL+2:N) contains the singular values of
                    110: *>         the lower block. On exit D(1:N) contains the singular values
                    111: *>         of the modified matrix.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in,out] ALPHA
                    115: *> \verbatim
                    116: *>          ALPHA is DOUBLE PRECISION
                    117: *>         Contains the diagonal element associated with the added row.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in,out] BETA
                    121: *> \verbatim
                    122: *>          BETA is DOUBLE PRECISION
                    123: *>         Contains the off-diagonal element associated with the added
                    124: *>         row.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in,out] U
                    128: *> \verbatim
                    129: *>          U is DOUBLE PRECISION array, dimension(LDU,N)
                    130: *>         On entry U(1:NL, 1:NL) contains the left singular vectors of
                    131: *>         the upper block; U(NL+2:N, NL+2:N) contains the left singular
                    132: *>         vectors of the lower block. On exit U contains the left
                    133: *>         singular vectors of the bidiagonal matrix.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in] LDU
                    137: *> \verbatim
                    138: *>          LDU is INTEGER
                    139: *>         The leading dimension of the array U.  LDU >= max( 1, N ).
                    140: *> \endverbatim
                    141: *>
                    142: *> \param[in,out] VT
                    143: *> \verbatim
                    144: *>          VT is DOUBLE PRECISION array, dimension(LDVT,M)
                    145: *>         where M = N + SQRE.
                    146: *>         On entry VT(1:NL+1, 1:NL+1)**T contains the right singular
                    147: *>         vectors of the upper block; VT(NL+2:M, NL+2:M)**T contains
                    148: *>         the right singular vectors of the lower block. On exit
                    149: *>         VT**T contains the right singular vectors of the
                    150: *>         bidiagonal matrix.
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[in] LDVT
                    154: *> \verbatim
                    155: *>          LDVT is INTEGER
                    156: *>         The leading dimension of the array VT.  LDVT >= max( 1, M ).
                    157: *> \endverbatim
                    158: *>
1.17      bertrand  159: *> \param[in,out] IDXQ
1.10      bertrand  160: *> \verbatim
                    161: *>          IDXQ is INTEGER array, dimension(N)
                    162: *>         This contains the permutation which will reintegrate the
                    163: *>         subproblem just solved back into sorted order, i.e.
                    164: *>         D( IDXQ( I = 1, N ) ) will be in ascending order.
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[out] IWORK
                    168: *> \verbatim
                    169: *>          IWORK is INTEGER array, dimension( 4 * N )
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] WORK
                    173: *> \verbatim
                    174: *>          WORK is DOUBLE PRECISION array, dimension( 3*M**2 + 2*M )
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] INFO
                    178: *> \verbatim
                    179: *>          INFO is INTEGER
                    180: *>          = 0:  successful exit.
                    181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    182: *>          > 0:  if INFO = 1, a singular value did not converge
                    183: *> \endverbatim
                    184: *
                    185: *  Authors:
                    186: *  ========
                    187: *
                    188: *> \author Univ. of Tennessee 
                    189: *> \author Univ. of California Berkeley 
                    190: *> \author Univ. of Colorado Denver 
                    191: *> \author NAG Ltd. 
                    192: *
1.17      bertrand  193: *> \date June 2016
1.10      bertrand  194: *
                    195: *> \ingroup auxOTHERauxiliary
                    196: *
                    197: *> \par Contributors:
                    198: *  ==================
                    199: *>
                    200: *>     Ming Gu and Huan Ren, Computer Science Division, University of
                    201: *>     California at Berkeley, USA
                    202: *>
                    203: *  =====================================================================
1.1       bertrand  204:       SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT,
                    205:      $                   IDXQ, IWORK, WORK, INFO )
                    206: *
1.17      bertrand  207: *  -- LAPACK auxiliary routine (version 3.6.1) --
1.1       bertrand  208: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    209: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.17      bertrand  210: *     June 2016
1.1       bertrand  211: *
                    212: *     .. Scalar Arguments ..
                    213:       INTEGER            INFO, LDU, LDVT, NL, NR, SQRE
                    214:       DOUBLE PRECISION   ALPHA, BETA
                    215: *     ..
                    216: *     .. Array Arguments ..
                    217:       INTEGER            IDXQ( * ), IWORK( * )
                    218:       DOUBLE PRECISION   D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
                    219: *     ..
                    220: *
                    221: *  =====================================================================
                    222: *
                    223: *     .. Parameters ..
                    224: *
                    225:       DOUBLE PRECISION   ONE, ZERO
                    226:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    227: *     ..
                    228: *     .. Local Scalars ..
                    229:       INTEGER            COLTYP, I, IDX, IDXC, IDXP, IQ, ISIGMA, IU2,
                    230:      $                   IVT2, IZ, K, LDQ, LDU2, LDVT2, M, N, N1, N2
                    231:       DOUBLE PRECISION   ORGNRM
                    232: *     ..
                    233: *     .. External Subroutines ..
                    234:       EXTERNAL           DLAMRG, DLASCL, DLASD2, DLASD3, XERBLA
                    235: *     ..
                    236: *     .. Intrinsic Functions ..
                    237:       INTRINSIC          ABS, MAX
                    238: *     ..
                    239: *     .. Executable Statements ..
                    240: *
                    241: *     Test the input parameters.
                    242: *
                    243:       INFO = 0
                    244: *
                    245:       IF( NL.LT.1 ) THEN
                    246:          INFO = -1
                    247:       ELSE IF( NR.LT.1 ) THEN
                    248:          INFO = -2
                    249:       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
                    250:          INFO = -3
                    251:       END IF
                    252:       IF( INFO.NE.0 ) THEN
                    253:          CALL XERBLA( 'DLASD1', -INFO )
                    254:          RETURN
                    255:       END IF
                    256: *
                    257:       N = NL + NR + 1
                    258:       M = N + SQRE
                    259: *
                    260: *     The following values are for bookkeeping purposes only.  They are
                    261: *     integer pointers which indicate the portion of the workspace
                    262: *     used by a particular array in DLASD2 and DLASD3.
                    263: *
                    264:       LDU2 = N
                    265:       LDVT2 = M
                    266: *
                    267:       IZ = 1
                    268:       ISIGMA = IZ + M
                    269:       IU2 = ISIGMA + N
                    270:       IVT2 = IU2 + LDU2*N
                    271:       IQ = IVT2 + LDVT2*M
                    272: *
                    273:       IDX = 1
                    274:       IDXC = IDX + N
                    275:       COLTYP = IDXC + N
                    276:       IDXP = COLTYP + N
                    277: *
                    278: *     Scale.
                    279: *
                    280:       ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
                    281:       D( NL+1 ) = ZERO
                    282:       DO 10 I = 1, N
                    283:          IF( ABS( D( I ) ).GT.ORGNRM ) THEN
                    284:             ORGNRM = ABS( D( I ) )
                    285:          END IF
                    286:    10 CONTINUE
                    287:       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
                    288:       ALPHA = ALPHA / ORGNRM
                    289:       BETA = BETA / ORGNRM
                    290: *
                    291: *     Deflate singular values.
                    292: *
                    293:       CALL DLASD2( NL, NR, SQRE, K, D, WORK( IZ ), ALPHA, BETA, U, LDU,
                    294:      $             VT, LDVT, WORK( ISIGMA ), WORK( IU2 ), LDU2,
                    295:      $             WORK( IVT2 ), LDVT2, IWORK( IDXP ), IWORK( IDX ),
                    296:      $             IWORK( IDXC ), IDXQ, IWORK( COLTYP ), INFO )
                    297: *
                    298: *     Solve Secular Equation and update singular vectors.
                    299: *
                    300:       LDQ = K
                    301:       CALL DLASD3( NL, NR, SQRE, K, D, WORK( IQ ), LDQ, WORK( ISIGMA ),
                    302:      $             U, LDU, WORK( IU2 ), LDU2, VT, LDVT, WORK( IVT2 ),
                    303:      $             LDVT2, IWORK( IDXC ), IWORK( COLTYP ), WORK( IZ ),
                    304:      $             INFO )
1.16      bertrand  305: *
                    306: *     Report the convergence failure.
                    307: *
1.1       bertrand  308:       IF( INFO.NE.0 ) THEN
                    309:          RETURN
                    310:       END IF
                    311: *
                    312: *     Unscale.
                    313: *
                    314:       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
                    315: *
                    316: *     Prepare the IDXQ sorting permutation.
                    317: *
                    318:       N1 = K
                    319:       N2 = N - K
                    320:       CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )
                    321: *
                    322:       RETURN
                    323: *
                    324: *     End of DLASD1
                    325: *
                    326:       END

CVSweb interface <joel.bertrand@systella.fr>